http://iet.metastore.ingenta.com
1887

access icon openaccess Convolutional sequence to sequence non-intrusive load monitoring

  • PDF
    3.3166465759277344MB
  • HTML
    52.2275390625Kb
  • XML
    46.8544921875Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/17/JOE.2018.8352.html;jsessionid=25wh72be8smf9.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8352&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Kelly, J., Knottenbelt, W.: ‘Neural NILM: deep neural networks applied to energy disaggregation’. Proc. 2nd ACM Int. Conf. Embedded Systems Energy-Efficient Built Environments, Zürich, Switzerland, 2015, pp. 5564.
    2. 2)
      • 2. Fischer, C.: ‘Feedback on household electricity consumption: a tool for saving energy?’, Energ. Effic., 2008, 1, (2), pp. 79104.
    3. 3)
      • 3. Zoha, A., Gluhak, A., Imran, M.A., et al: ‘Nonintrusive load monitoring approaches for disaggregated energy sensing: A survey’, Sensors, 2012, 12, (12), pp. 1683816866.
    4. 4)
      • 4. Faustine, A., Mvungi, N.H., Kaijage, S., et al: ‘A survey on non-intrusive load monitoring methodies and techniques for energy disaggregation problem’, arXiv preprint arXiv:1703.00785, 2017.
    5. 5)
      • 5. Goodfellow, I., Bengio, Y., Courville, A.: ‘Deep learning’ (MIT Press, Cambridge, MA, USA, 2016).
    6. 6)
      • 6. Kim, J., Le, T.-T.-H., Kim, H.: ‘Nonintrusive load monitoring based on advanced deep learning and novel signature’, Comput. Intell. Neurosci., 2017, 2017, pp. 122.
    7. 7)
      • 7. Zhang, C., Zhong, M., Wang, Z., et al: ‘Sequence-to-point learning with neural networks for nonintrusive load monitoring’. Proc. Thirty-Second AAAI Conf. Artificial Intelligence, New Orleans, USA, February 2018.
    8. 8)
      • 8. Nascimento, P.P.M.: ‘Applications of deep learning techniques on NILM’. PhD. dissertation, Universidade Federal do Rio de Janeiro, 2016.
    9. 9)
      • 9. Graves, A., Mohamed, A.-R., Hinton, G.: ‘Speech recognition with deep recurrent neural networks’. Proc. IEEE Int. Conf. Acoustics, Speech Signal Processing (ICASSP), Vancouver, Canada, May 2013, pp. 66456649.
    10. 10)
      • 10. Bahdanau, D., Cho, K., Bengio, Y.: ‘Neural machine translation by jointly learning to align and translate’. Proc. Third Int. Conf. Learning Representations, San Diego, USA, May 2015.
    11. 11)
      • 11. Dauphin, Y.N., Fan, A., Auli, M., et al: ‘Language modeling with gated convolutional networks’, arXiv preprint arXiv:1612.08083, 2016.
    12. 12)
      • 12. Gehring, J., Auli, M., Grangier, D., et al: ‘Convolutional sequence to sequence learning’, arXiv preprint arXiv:1705.03122, 2017.
    13. 13)
      • 13. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’. Proc. IEEE Conf. Computer Vision Pattern Recognition, Las Vegas, NV, USA, June 2016, pp. 770778.
    14. 14)
      • 14. Kolter, J.Z., Johnson, M.J.: ‘Redd: A public data set for energy disaggregation research’. Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, August 2011, pp. 5962.
    15. 15)
      • 15. Chollet, F.: ‘Keras’, 2015. Available at https://github.com/fchollet/keras.
    16. 16)
      • 16. Abadi, M., Ashich, A., Paul, B., et al: ‘Tensorflow: large-scale machine learning on heterogeneous distributed systems’, arXiv preprint arXiv:1603.04467, 2016.
    17. 17)
      • 17. Ren, S., He, K., Girshick, R., et al: ‘Faster R-CNN: towards real-time object detection with region proposal networks’. Advances in Neural Information Processing Systems, Montréal, Canada, 2015, pp. 9199.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8352
Loading

Related content

content/journals/10.1049/joe.2018.8352
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address