http://iet.metastore.ingenta.com
1887

access icon openaccess Electric load data characterising and forecasting based on trend index and auto-encoders

  • PDF
    2.9643335342407227MB
  • XML
    81.0859375Kb
  • HTML
    87.7529296875Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/17/JOE.2018.8350.html;jsessionid=7a0dpelki9rk6.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8350&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Akkaya, K., Rabieh, K., Mahmoud, M., et al: ‘Customized certificate revocation lists for IEEE 802.11s-based smart grid AMI networks’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 23662374.
    2. 2)
      • 2. Peppanen, J., Reno, M.J., Thakkar, M., et al: ‘Leveraging AMI data for distribution system model calibration and situational awareness’, IEEE Trans. Smart Grid, 2017, 6, (4), pp. 20502059.
    3. 3)
      • 3. Adam, C.: ‘Electric company smart meter deployments: foundation for a smart grid’ (The Edison Foundation, Washington, USA, 2016).
    4. 4)
      • 4. Wang, Y., Chen, Q., Kang, C., et al: ‘Load profiling and its application to demand response: a review’, Tsinghua Sci. Technol., 2015, 20, (2), pp. 117129.
    5. 5)
      • 5. Li, F.: ‘Analysis on residential electrical load’, Build. Electr., 2011, 30, (3), pp. 1923.
    6. 6)
      • 6. The National Development and Reform Commission, the State Grid Corporation of China: ‘Guidelines for demand side management’ (China Electric Power Press, Beijing, 2007).
    7. 7)
      • 7. Kang, C., Xia, Q., Zhang, B.: ‘Review of power system load forecasting and its development’, Autom. Electr. Power Syst., 2004, 28, (17), pp. 111.
    8. 8)
      • 8. Fay, D., Ringwood, J.V., Condon, M., et al: ‘24-h electrical load data – A sequential or partitioned time series?’, Neurocomputing, 2010, 55, (34), pp. 469498.
    9. 9)
      • 9. Saber, A.Y.,, Alam, A.R.: ‘Short term load forecasting using multiple linear regression for big data’. 2017 IEEE Symp. Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 2017, pp. 16.
    10. 10)
      • 10. Nie, H., Liu, G., Liu, X., et al: ‘Hybrid of ARIMA and SVMs for short-term load forecasting’, Energy Proc., 2012, 16, (5), pp. 14551460.
    11. 11)
      • 11. Zhang, X., Wang, R., Zhang, T., et al: ‘Short-term load forecasting based on a improved deep belief network’. Int. Conf. Smart Grid Clean Energy Technologies, Chengdu, China, 2017, pp. 339342.
    12. 12)
      • 12. Wan, C., Xu, Z., Pinson, P., et al: ‘Probabilistic forecasting of wind power generation using extreme learning machine’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 10331044.
    13. 13)
      • 13. Wang, T., Sun, Q.: ‘Candlestick chart and market effectiveness’, Mod. Manag., 2014, 34, (4), pp. 1314.
    14. 14)
      • 14. Zheng, H.: ‘Application of KDJ indicators in securities investment analysis’, Secur. Futur. China, 2012, 7, pp. 1414.
    15. 15)
      • 15. Dai, X., Zhou, X., Li, H., et al: ‘The empirical research on the security venture based on MACD and candlesticks’, J. Hunan Univ. Technol., 2010, 24, (4), pp. 102105.
    16. 16)
      • 16. Wang, K., Yang, J., Shi, G., et al: ‘An expanded training set based validation method to avoid overfitting for neural network classifier’. Int. Conf. Natural Computation, Jinan, China, 2008, pp. 8387.
    17. 17)
      • 17. Vincent, P., Larochelle, H., Bengio, Y., et al: ‘Extracting and composing robust features with denoising autoencoders’. Proc. 25th Int. Conf. Machine Learning, Helsinki, Finland, 2008, pp. 10961103.
    18. 18)
      • 18. Schölkopf, B., Platt, J., Hofmann, T.: ‘Greedy layer-wise training of deep networks’, Adv. Neural Inf. Process. Syst., 2007, 19, pp. 153160.
    19. 19)
      • 19. Hinton, G.E., Osindero, S., Teh, Y.W.: ‘A fast learning algorithm for deep belief nets’, Neural Comput., 2014, 18, (7), pp. 15271554.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8350
Loading

Related content

content/journals/10.1049/joe.2018.8350
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address