access icon openaccess High step-up three level boost converter with inverse characteristic

This paper presents a novel magnetically coupled dual switches three level dc–dc converter with high-voltage boost and reduced power device voltage stress ability. The topology can achieve high-voltage boost ability by using coupled inductor and low MOSFET voltage stress by using three-level idea. However, unlike other high step-up three level converters, its gain is increased by reducing turns ratio. The name inverse is used for representing the inverse proportion principle of the proposed converter. Aiming at existing leakage inductance, introduced diode and capacitor circuit not only absorbs the leakage energy but also further boosts the gain. In addition, the proposed converter only utilises one magnetic core. Operating principles and relevant theoretical analysis of the proposed converter are described. In order to verify the proposed converter's performance, the relevant experiment is performed.

Inspec keywords: capacitors; DC-DC power convertors; low-power electronics; power MOSFET; magnetic cores; switching convertors; inductors

Other keywords: low MOSFET voltage stress; magnetic core; high-voltage boost ability; inverse proportion principle; magnetically coupled dual switches; leakage energy; three level dc–dc converter; coupled inductor; power device voltage stress ability; high step-up three level boost converter; capacitor circuit

Subjects: Power electronics, supply and supervisory circuits; Power semiconductor devices; Insulated gate field effect transistors; DC-DC power convertors; Electrical/electronic equipment (energy utilisation)

References

    1. 1)
      • 13. Axelrod, B., Berkovich, Y., Ioinovici, A.: ‘Switched-capacitor/ switched-inductor structures for getting transformerless hybrid DC-DC PWM converters’, IEEE Trans. Circuits Syst. I, 2008, 55, (2), pp. 687696.
    2. 2)
      • 19. Zhao, Q., Lee, F.C.: ‘High-efficiency, high step-up dc–dc converters’, IEEE Trans. Power Electron., 2013, 18, (1), pp. 6573.
    3. 3)
      • 12. Axelrod, B., Berkovich, Y., Tapuchi, S., et al: ‘Single-stage single-switch switched-capacitor buck/buck-boost-type converter’, IEEE Trans. Aerosp. Electron. Syst., 2009, 45, (2), pp. 419430.
    4. 4)
      • 5. Wai, R.J., Jheng, K.H.: ‘High-efficiency single output DC–DC converter’, IEEE Trans. Power Electron., 2013, 23, (2), pp. 886898.
    5. 5)
      • 3. Liu, H.C., Wang, L.C., Ji, Y.L., et al: ‘A novel reversal coupled inductor high-conversion-ratio bidirectional DC–DC converter’, IEEE Trans. Power Electron., 2018, 33, (6), pp. 49684979.
    6. 6)
      • 7. Zhao, Y., Li, W.H., He, X.N.: ‘High step-up boost converter with passive lossless clamp circuit for non-isolated high step-up applications’, IET Power Electron., 2011, 4, (8), pp. 851859.
    7. 7)
      • 2. Liu, H.C., Wang, L.C., Li, F., et al: ‘Bidirectional active clamp DC–DC converter with high conversion ratio’, Electron. Lett., 2017, 53, (22), pp. 14831485.
    8. 8)
      • 10. Luo, F.L.: ‘Luo-converters, voltage lift technique’. Proc. IEEE Power Electron. Spec. Conf., Fukuoka, Japan, May 1998, vol. 2, pp. 17831789.
    9. 9)
      • 9. Siwakoti, Y.P., Blaabjerg, F., Loh, P.C.: ‘High step-up trans-inverse (Tx-1) DC–DC converter for the distributed generation system’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 42784291.
    10. 10)
      • 14. Li, W.H., He, X.N.: ‘Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12391250.
    11. 11)
      • 15. Liu, H.C., Li, F.: ‘A novel high step-up converter with a quasi-active switched-inductor structure for renewable energy systems’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 50305039.
    12. 12)
      • 4. Hsieh, Y.P., Chen, J.F., Liang, T.J., et al: ‘Novel high step-up DC-DC converter for a microgrid system’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 11271136.
    13. 13)
      • 6. Li, F., Liu, H.C., Zhang, C.M., et al: ‘Novel high step-up dual switches converter with reduced power device voltage stress for distributed generation system’, IET Power Electron., 2017, 10, (14), pp. 18001809.
    14. 14)
      • 16. Gu, B., Dominic, J., Lai, J.S., et al: ‘High boost ratio hybrid transformer DC–DC converter for photovoltaic module applications’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 20482058.
    15. 15)
      • 18. Bratcu, A.I., Munteanu, I., Bacha, S., et al: ‘Cascaded DC–DC converter photovoltaic systems: power optimization issues’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 403411.
    16. 16)
      • 1. Siwakoti, Y.P., Loh, P.C., Blaabjerg, F., et al: ‘Y-Source impedance network based boost DC/DC converter for distributed generation’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 10591069.
    17. 17)
      • 8. Hsieh, Y.P., Chen, J.F., Liang, T.J., et al: ‘Novel high step-up DC–DC converter for distributed generation system’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 14731482.
    18. 18)
      • 11. Liu, H.C., Li, F., Ai, J.: ‘A novel high step-up dual switches converter with coupled inductor and voltage multiplier cell for a renewable energy system’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 49744983.
    19. 19)
      • 17. Wang, T., Tang, Y., He, Y.H.: ‘Study of an active network DC/DC boost converter based switched-inductor’. Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Denver, USA, September 2013, pp. 49554960.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8347
Loading

Related content

content/journals/10.1049/joe.2018.8347
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading