access icon openaccess Data-based cascade control of permanent magnet synchronous motor with industrial robot application

The industrial robot is typically actuated by a permanent magnet synchronous motor (PMSM). In manufacturing applications, the position control performance of the PMSM actuation systems will directly affect the efficiency and precision of the industrial robot. This study proposes a cascade control method to achieve accurate position profile-tracking for a field-bus industrial robot. The proposed method is a data-based method, which implies that only process data is directly used for the controller design without system model information. The cascade position controller optimisation problem is formulated using the collected data from the plant to be controlled. Then, a multiple degrees-of-freedom solution is designed to obtain the optimal control parameters for all actuation PMSM systems. The effectiveness and robustness of the proposed method are demonstrated using an experimental example implemented on the developed field-bus industrial robot.

Inspec keywords: robust control; position control; industrial robots; synchronous motors; permanent magnet motors; cascade control; optimal control; machine control; control system synthesis

Other keywords: manufacturing applications; collected data; developed field-bus industrial robot; industrial robot application; controller design; process data; PMSM actuation systems; permanent magnet synchronous motor; cascade position controller optimisation problem; position control performance; cascade control method; optimal control parameters; system model information; actuation PMSM systems; data-based method; accurate position profile-tracking; data-based cascade control

Subjects: Synchronous machines; Spatial variables control; Control of electric power systems

References

    1. 1)
      • 7. Minh, T., Tjahjowidodo, T., Ramon, H., et al: ‘Cascade position control of a single pneumatic artificial muscle-mass system with hysteresis compensation’, Mechatronics (Oxf), 2010, 20, (3), pp. 402414.
    2. 2)
      • 13. Cho, N., Shin, H., Kim, Y., et al: ‘Composite model reference adaptive control with parameter convergence under finite excitation’, IEEE Trans. Autom. Control, 2018, 63, (3), pp. 811818.
    3. 3)
      • 3. Faulwasser, T., Weber, T., Zometa, P., et al: ‘Implementation of nonlinear model predictive path-following control for an industrial robot’, IEEE Trans. Control Syst. Technol., 2017, 25, (4), pp. 15051511.
    4. 4)
      • 14. Xie, Y., Tang, X., Song, B., et al: ‘Data-driven adaptive fractional order PI control for PMSM servo system with measurement noise and data dropouts’, ISA Trans., 2018, 75, pp. 172188.
    5. 5)
      • 4. Belda, K., Vošmik, D.: ‘Explicit generalized predictive control of speed and position of PMSM drives’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 38893896.
    6. 6)
      • 15. Campi, M., Savaresi, S.: ‘Direct nonlinear control design: the virtual reference feedback tuning (VRFT) approach’, IEEE Trans. Autom. Control, 2006, 51, (1), pp. 1427.
    7. 7)
      • 11. Cena, G., Bertolotti, I., Scanzio, S., et al: ‘Evaluation of EtherCAT distributed clock performance’, IEEE Trans. Ind. Inf., 2012, 8, (1), pp. 2029.
    8. 8)
      • 10. Pi, Y., Wang, X.: ‘Observer-based cascade control of a 6-DOF parallel hydraulic manipulator in joint space coordinate’, Mechatronics (Oxf), 2010, 20, (6), pp. 648655.
    9. 9)
      • 12. Lu, S., Tang, X., Song, B., et al: ‘GPC-based self-tuning PI controller for speed servo system of PMSLM’, Asian J. Control, 2013, 15, (5), pp. 13251336.
    10. 10)
      • 6. Du, Z., Yue, D., Hu, S.: ‘H-infinity stabilization for singular networked cascade control systems with state delay and disturbance’, IEEE Trans. Ind. Informat., 2014, 10, (2), pp. 882894.
    11. 11)
      • 16. Barbosa, R., Machado, J., Ferreira, I.: ‘Tuning of PID controllers based on Bode's ideal transfer function’, Nonlinear Dyn., 2004, 38, (1–4), pp. 305321.
    12. 12)
      • 2. Bonilla, I., Mendoza, M., Gonzalez-Galvan, E., et al: ‘Path-tracking maneuvers with industrial robot manipulators using uncalibrated vision and impedance control’, IEEE Trans. Syst., Man, Cybern. C (Appl. Rev.), 2012, 42, (6), pp. 17161729.
    13. 13)
      • 5. Zhao, Y., Zhang, Z., Qiao, W., et al: ‘An extended flux model-based rotor position estimator for sensorless control of salient-pole permanent-magnet synchronous machines’, IEEE Trans. Power Electron., 2015, 30, (8), pp. 44124422.
    14. 14)
      • 8. Pisano, A., Davila, A., Fridman, L., et al: ‘Cascade control of PM DC drives via second-order sliding-mode technique’, IEEE Trans. Ind. Electron., 2008, 55, (11), pp. 38463854.
    15. 15)
      • 1. Janot, A., Vandanjon, P., Gautier, M.: ‘A generic instrumental variable approach for industrial robot identification’, IEEE Trans. Control Syst. Technol., 2014, 22, (1), pp. 132145.
    16. 16)
      • 9. Xiao, L., Lu, B., Yu, B., et al: ‘Cascaded sliding mode force control for a single-rod electrohydraulic actuator’, Neurocomputing, 2015, 156, pp. 117120.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8343
Loading

Related content

content/journals/10.1049/joe.2018.8343
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading