Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Modified hill climbing MPPT algorithm with reduced steady-state oscillation and improved tracking efficiency

To ensure the photovoltaic (PV) system can still output maximum power under changing environmental conditions, a modified hill climbing algorithm is proposed. The algorithm uses a variable step-size strategy to reduce the steady-state oscillations and prevent operating point from diverging away from the maximum power point by introducing boundary conditions. To verify its effectiveness, the proposed algorithm is compared with the conventional and adaptive hill climbing method under the environmental condition of irradiance step change and gradual change. The simulation results show that the proposed algorithm can increase the dynamic response speed of the PV system by 75% under varying irradiance, and can achieve a steady-state tracking accuracy of 99.8%. Besides, the proposed algorithm only needs to embed several lines of additional programs in the conventional hill climbing maximum power point tracking (MPPT) control program and does not require additional hardware components, which reduces the cost of PV power generation.

References

    1. 1)
      • 6. Esram, T., Chapman, P.L.: ‘Comparison of photovoltaic array maximum power point tracking techniques’, IEEE Trans. Energy Convers., 2007, 22, pp. 439449.
    2. 2)
      • 13. Boumaaraf, H., Talha, A., Bouhali, O.: ‘A three-phase NPC grid-connected inverter for photovoltaic applications using neural network MPPT’, Renew. Sust. Energy Rev., 2015, 49, pp. 11711179.
    3. 3)
      • 2. Wei, H., Liu, J., Yang, B.: ‘Cost-benefit comparison between domestic solar water heater (DSHW) and building integrated photovoltaic (BIPV) systems for households in urban China’, Appl. Energy, 2014, 126, pp. 4755.
    4. 4)
      • 11. Tey, K.S., Mckhilef, S.: ‘Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level’, Sol. Energy, 2014, 101, pp. 333342.
    5. 5)
      • 8. Kjar, S.B.: ‘Evaluation of the hill climbing and the incremental conductance maximum power point trackers for photovoltaic power systems’, IEEE Trans. Energy Convers., 2012, 27, pp. 922929.
    6. 6)
      • 17. Liu, F.R., Duan, S., Liu, F., et al: ‘A variable step size INC MPPT method for PV system’, IEEE Trans. Ind. Electron., 2008, 55, pp. 26222628.
    7. 7)
      • 1. Ram, J.P., Badu, T.S., Rajasekar, N.: ‘A comprehensive review on solar PV maximum power point tracking techniques’, Renew. Sust. Energy Rev., 2017, 67, pp. 826848.
    8. 8)
      • 9. Femia, N., Petrone, G., Spagnuolo, G., et al: ‘Optimization of perturb and observe maximum power point tracking method’, IEEE Trans. Power Electron., 2005, 20, pp. 963973.
    9. 9)
      • 18. Bannett, T., Zilouchian, A., Messenger, R.: ‘A proposed maximum power point tracking algorithm based on a new testing standard’, Sol. Energy, 2013, 89, pp. 2341.
    10. 10)
      • 10. Dabra, V., Paliwal, K.K., Sharma, P., et al: ‘Optimization of photovoltaic power system: A comparative study’, Prot. Control Mod. Power Syst., 2017, 2, pp. 2939.
    11. 11)
      • 15. Xiao, W., Dunford, W.: ‘A modified adaptive hill climbing MPPT method for photovoltaic power systems’. Proc. 35th IEEE Power Electronics Spec. Conf., Aachen, Germany, June 2004, pp. 19571963.
    12. 12)
      • 20. Bletterie, B., Bruendlinger, R., Spielauer, S.: ‘Quantifying dynamic MPPT performance under realistic conditions first test results – The way forward’. Proc. 21st Eur. Photovolt. sol. Energy Conf., Dresden, Germany, September 2006, pp. 17.
    13. 13)
      • 5. Ahmed, J., Salam, Z.: ‘A critical evaluation on maximum power point tracking methods for partial shading in PV systems’, Renew. Sust. Energy Rev., 2015, 47, pp. 933953.
    14. 14)
      • 16. Ishaque, K., Salam, Z., Taheri, H., et al: ‘Accurate MATLAB simulation PV system simulator based on a two-diode model’, J. Power Electron., 2011, 11, pp. 179187.
    15. 15)
      • 3. Kadri, R., Gaubert, J.P., Champenios, G.: ‘An improved maximum power point tracking for photovoltaic grid-connected inverter based on voltage-oriented control’, IEEE Trans. Ind. Electron., 2011, 58, pp. 6675.
    16. 16)
      • 19. Ahmed, J., Salam, Z.: ‘A modified P&O maximum power point method with reduced steady-state oscillation and improve tracking efficiency’, IEEE Trans. Sust. Energy, 2016, 7, pp. 15061515.
    17. 17)
      • 12. Khateb, A.E., Rahim, N.A., Selevaraj, J., et al: ‘Fuzzy-logic-controller-based sepic converter for maximum power point tracking’, IEEE Trans. Ind. Appl., 2014, 50, pp. 23492358.
    18. 18)
      • 4. Salam, Z., Ahmed, J., Merugu, B.S.: ‘The application of soft computing methods for MPPT of PV system: a technique and status review’, Appl. Energy, 2013, 107, pp. 135148.
    19. 19)
      • 14. Ishaque, K., Salam, Z.: ‘A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition’, IEEE Trans. Ind. Electron., 2013, 60, pp. 31953206.
    20. 20)
      • 7. Alagmi, B.N., Ahmed, K.H., Finney, S.J., et al: ‘Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system’, IEEE Trans. Power Electron., 2011, 26, pp. 10221030.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8337
Loading

Related content

content/journals/10.1049/joe.2018.8337
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address