Three-way recommendation integrating global and local information
- Author(s): Yuan-Yuan Ma 1 ; Heng-Ru Zhang 1 ; Yuan-Yuan Xu 1 ; Fan Min 1 ; Lei Gao 1
-
-
View affiliations
-
Affiliations:
1:
School of Computer Science, Southwest Petroleum University , Chengdu 610500 , People's Republic of China
-
Affiliations:
1:
School of Computer Science, Southwest Petroleum University , Chengdu 610500 , People's Republic of China
- Source:
Volume 2018, Issue 16,
November
2018,
p.
1397 – 1401
DOI: 10.1049/joe.2018.8300 , Online ISSN 2051-3305
- « Previous Article
- Table of contents
- Next Article »
This is an open access article published by the IET under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/)
Received
19/07/2018,
Accepted
26/07/2018,
Published
16/08/2018

Full text loading...
/deliver/fulltext/joe/2018/16/JOE.2018.8300.html;jsessionid=2tl9spsm5icmt.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8300&mimeType=html&fmt=ahah
Inspec keywords: recommender systems; matrix decomposition; rough set theory; decision theory; approximation theory
Other keywords: incomplete user-item rating matrix; decision-theoretic rough set model; matrix factorisation approach; three-way recommendation model; matrix factorisation algorithms; recommendation quality; cost matrix; recommender actions; local information; global information; recommendation thresholds; rating prediction; low-rank approximation
Subjects: Combinatorial mathematics; Linear algebra (numerical analysis); Interpolation and function approximation (numerical analysis); Information networks
References
-
-
1)
-
16. Smola, A.J., Schölkopf, B.: ‘Sparse greedy matrix approximation for machine learning’. Int. Conf. on Machine Learning, 2000, pp. 911–918.
-
-
2)
-
29. Bertsekas, D.P.: ‘Constrained optimization and Lagrange multiplier methods’ (Academic Press, New York, 2014, 1st edn.).
-
-
3)
-
33. Fenton, N., Neil, M.: ‘Risk assessment and decision analysis with Bayesian networks’ (CRC Press, Boca Raton, 2012, 1st edn.).
-
-
4)
-
19. Srebro, N., Jaakkola, T.: ‘Weighted low-rank approximations’. Proc. of the 20th Int. Conf. on Machine Learning (ICML-03), 2003, pp. 720–727.
-
-
5)
-
12. Yao, Y.: ‘The superiority of three-way decisions in probabilistic rough set models’, Inf. Sci., 2011, 181, (6), pp. 1080–1096.
-
-
6)
-
23. Liu, X.Y., Zhou, Z.H.: ‘The influence of class imbalance on cost-sensitive learning: An empirical study’. Sixth Int. Conf. on IEEE, 2006, pp. 970–974.
-
-
7)
-
18. Billsus, D., Pazzani, M.J.: ‘Learning collaborative information filters’. AAAI Tech. Report, 1998, vol. 98, pp. 46–54.
-
-
8)
-
5. Sarwar, B., Karypis, G., Konstan, J., et al: ‘Incremental singular value decomposition algorithms for highly scalable recommender systems’. Int. Conf. on Computer and Information Science, 2002, pp. 27–28.
-
-
9)
-
22. Ma, H., Yang, H., King, I., et al: ‘Semi-nonnegative matrix factorization with global statistical consistency for collaborative filtering’. Proc. of the 18th ACM Conf. on Information and Knowledge Management, 2009, pp. 767–776.
-
-
10)
-
24. Yang, X., Yao, J.: ‘Modelling multi-agent three-way decisions with decision-theoretic rough sets’, Fundam. Inform., 2012, 115, (2–3), pp. 157–171.
-
-
11)
-
8. Huang, J., Wang, J., Yao, Y., et al: ‘Cost-sensitive three-way recommendations by learning pair-wise preferences’, Int. J. Approx. Reason., 2017, 86, pp. 28–40.
-
-
12)
-
10. Zhang, H.R., Min, F., Shi, B.: ‘Regression-based three-way recommendation’, Inf. Sci., 2017, 378, (1), pp. 444–461.
-
-
13)
-
11. Yao, Y.: ‘Three-way decisions with probabilistic rough sets’, Inf. Sci., 2010, 180, (3), pp. 341–353.
-
-
14)
-
9. Zhang, H.R., Min, F.: ‘Three-way recommender systems based on random forests’, Knowl.-Based Syst., 2016, 91, pp. 275–286.
-
-
15)
-
14. Hartigan, J.A., Wong, M.A.: ‘Algorithm AS 136: A k-means clustering algorithm’, J. Roy. Stat. Soc., 1979, 28, (1), pp. 100–108.
-
-
16)
-
32. Willmott, C.J., Matsuura, K.: ‘Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance’, Clim. Res., 2005, 30, (1), pp. 79–82.
-
-
17)
-
34. Ji, S., Carin, L.: ‘Cost-sensitive feature acquisition and classification’, Pattern Recognit., 2007, 40, (5), pp. 1474–1485.
-
-
18)
-
20. Lee, J., Kim, S., Lebanon, G., et al: ‘Local low-rank matrix approximation’. Int. Conf. on Machine Learning, 2013, pp. 82–90.
-
-
19)
-
7. Li, T., Wang, J., Chen, H., et al: ‘A NMF-based collaborative filtering recommendation algorithm’. The Sixth World Congress on Intelligent Control and Automation, 2006, vol. 2, pp. 6082–6086.
-
-
20)
-
25. Li, H., Zhang, L., Huang, B., et al: ‘Sequential three-way decision and granulation for cost-sensitive face recognition’, Knowl.-Based Syst., 2016, 91, pp. 241–251.
-
-
21)
-
27. Schaffer, J.D., Lee, K.P., Gutta, S.: ‘Three-way media recommendation method and system’. U.S. Patent 7,937,725, May 2011.
-
-
22)
-
30. Chu, D., Mehrmann, V., Nichols, N.K.: ‘Minimum norm regularization of descriptor systems by mixed output feedback’, Linear Algebr. Appl., 1999, 296, (1–3), pp. 39–77.
-
-
23)
-
21. Furnas, G.W., Deerwester, S., Dumais, S.T., et al: ‘Information retrieval using a singular value decomposition model of latent semantic structure’. Proc. of the 11th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, 1988, vol. 51, (2), pp. 465–480.
-
-
24)
-
28. Liu, D., Li, T., Liang, D.: ‘Three-way government decision analysis with decision-theoretic rough sets’, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 2012, 20, (supp01), pp. 119–132.
-
-
25)
-
26. Li, H., Zhou, X., Huang, B., et al: ‘Cost-sensitive three-way decision: a sequential strategy’. Int. Conf. on Rough Sets and Knowledge Technology, 2013, pp. 325–337.
-
-
26)
-
6. Lee, D.D., Seung, H.S.: ‘Learning the parts of objects by non-negative matrix factorization’, Nature, 1999, 401, (6755), pp. 788–791.
-
-
27)
-
31. Pong, T.K., Tseng, P., Ji, S., et al: ‘Trace norm regularization: reformulations, algorithms, and multi-task learning’, SIAM J. Optim., 2010, 20, (6), pp. 3465–3489.
-
-
28)
-
15. Joyce, J.M.: ‘Kullback-Leibler divergence’, in Miodrag, L. (Ed.): ‘International encyclopedia of statistical science’ (Springer, Berlin Heidelberg, 2011), pp. 720–722.
-
-
29)
-
2. Salakhutdinov, R., Mnih, A.: ‘Bayesian probabilistic matrix factorization using Markov chain Monte Carlo’. Proc. of the 25th Int. Conf. on Machine Learning, 2008, pp. 880–887.
-
-
30)
-
35. Harper, F.M., Konstan, J.A.: ‘The MovieLens datasets: history and context’, ACM Trans. Inter. Intell. Syst. (TIIS), 2016, 5, (4), pp. 1–20.
-
-
31)
-
3. Yang, W.F., Wang, M., Chen, Z.: ‘Fast probabilistic matrix factorization for recommender system’. Int. Conf. on Mechatronics and Automation (ICMA), 2014, pp. 1889–1894.
-
-
32)
-
13. Min, F., He, H., Qian, Y., et al: ‘Test-cost-sensitive attribute reduction’, Inf. Sci., 2011, 181, (22), pp. 4928–4942.
-
-
33)
-
1. Salakhutdinov, R., Mnih, A.: ‘Probabilistic matrix factorization’. Proc. of the 20th Int. Conf. on Neural Information Processing Systems, Vancouver, Canada, 2008, pp. 1257–1264.
-
-
34)
-
4. Ma, C.C.: ‘A guide to singular value decomposition for collaborative filtering’. Computer, Long Beach, CA, 2008, pp. 1–14.
-
-
35)
-
17. Yao, Y.: ‘Three-way decision: an interpretation of rules in rough set theory’. Int. Conf. on Rough Sets and Knowledge Technology, 2009, pp. 642–649.
-
-
1)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8300

Related content
content/journals/10.1049/joe.2018.8300
pub_keyword,iet_inspecKeyword,pub_concept
6
6
