http://iet.metastore.ingenta.com
1887

access icon openaccess Landlord's equal cards force generation algorithm

  • HTML
    48.25390625Kb
  • PDF
    1.9943208694458008MB
  • XML
    44.8837890625Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8289.html;jsessionid=125px6xrf6euo.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8289&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al: ‘Generative adversarial nets’. Int. Conf. on Neural Information Processing Systems, Montreal, Canada, 2014, pp. 26722680.
    2. 2)
      • 2. Fergus, R., Fergus, R., Fergus, R., et al: ‘Deep generative image models using a Laplacian pyramid of adversarial networks’. Int. Conf. on Neural Information Processing Systems, Montreal, Canada, 2015, pp. 14861494.
    3. 3)
      • 3. Radford, A., Metz, L., Chintala, S.: ‘Unsupervised representation learning with deep convolutional generative adversarial networks’, Comput. Sci., 2015, arXiv preprint arXiv:1511.06434.
    4. 4)
      • 4. Salimans, T., Goodfellow, I., Zaremba, W., et al: ‘Improved techniques for training GANS’, 2016, arXiv preprint arXiv:1606.03498.
    5. 5)
      • 5. Chen, X., Duan, Y., Houthooft, R., et al: ‘Infogan: interpretable representation learning by information maximizing generative adversarial nets’, 2016, arXiv preprint arXiv:1606.03657.
    6. 6)
      • 6. Zhao, J., Mathieu, M., LeCun, Y.: ‘Energy-based generative adversarial network’, 2016, arXiv preprint arXiv:1609.03126.
    7. 7)
      • 7. Creswell, A., Bharath, A.A.: ‘Task specific adversarial cost function’, 2016, arXiv preprint arXiv:1609.08661.
    8. 8)
      • 8. Nowozin, S., Cseke, B., Tomioka, R.: ‘f-GAN: training generative neural samplers using variational divergence minimization’, 2016, arXiv preprint arXiv:1606.00709.
    9. 9)
      • 9. Lecun, Y., Bengio, Y., Hinton, G.: ‘Deep learning’, Nature, 2015, 521, (7553), pp. 436444.
    10. 10)
      • 10. Reed, S., Akata, Z., Yan, X., et al: ‘Generative adversarial text to image synthesis’, 2016, pp. 10601069.
    11. 11)
      • 11. Elgammal, A., Liu, B., Elhoseiny, M., et alCAN: creative adversarial networks, generating ‘art’ by learning about styles and deviating from style norms’, 2017.
    12. 12)
      • 12. Vondrick, C., Pirsiavash, H., Torralba, A.: ‘Generating videos with scene dynamics’. Neural Information Processing Systems (NIPS), Barcelona, Spain, 2016.
    13. 13)
      • 13. Arjovsky, M., Chintala, S., Bottou, L.: ‘Wasserstein GAN’, 2017.
    14. 14)
      • 14. Gulrajani, I., Ahmed, F., Arjovsky, M., et al: ‘Improved training of Wasserstein GANs’, 2017.
    15. 15)
      • 15. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’, 2015, pp. 770778.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8289
Loading

Related content

content/journals/10.1049/joe.2018.8289
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address