access icon openaccess Novel partitioned stator hybrid excited machines with magnets on slot openings

In this study, a novel partitioned stator hybrid excited machine is proposed, in which the excitation sources including both permanent magnets (PMs) and field windings are allocated on the secondary stator that is separated from the original stator having armature windings. As a result, the available space is boosted to improve the torque density and flux regulation capability. Meanwhile, the rotor is simple without coil or PM. The PMs on the stator is placed on the slot openings between the two neighbour tooth tips, with which the uncontrolled voltage of the proposed machine is limited and it is favoured for safety-critical applications. The machine topology and operating principle are introduced in detail, and the basic electromagnetic performance is evaluated based on finite element method to validate the analysis.

Inspec keywords: rotors; permanent magnet machines; brushless machines; machine windings; finite element analysis; stators; electric potential; magnetic flux; torque

Other keywords: excitation sources; stator hybrid excited machine; machine topology; flux regulation capability; PMs; original stator; slot openings; secondary stator; field windings; torque density

Subjects: a.c. machines; d.c. machines; Finite element analysis

References

    1. 1)
      • 11. Chen, J.T., Zhu, Z.Q., Iwasaki, S., et al: ‘A novel hybrid-excited switched-flux brushless AC machine for EV/HEV applications’, IEEE Trans. Veh. Technol., 2011, 60, (4), pp. 13651373.
    2. 2)
      • 16. Hua, H., Zhu, Z.Q.: ‘Novel partitioned stator hybrid excited switched flux machines’, IEEE Trans. Energy Convers., 2017, 32, (2), pp. 495504.
    3. 3)
      • 17. Hua, H., Zhu, Z.Q.: ‘Novel parallel hybrid excited machines with separate stators’, IEEE Trans. Energy Convers., 2016, 31, (3), pp. 12121220.
    4. 4)
      • 2. Zhang, Y., Jahns, T.M.: ‘Uncontrolled generator operation of pm synchronous machine drive with current-source inverter using normally on switches’, IEEE Trans. Ind. Appl., 2017, 53, (1), pp. 203211.
    5. 5)
      • 1. Song, W.L., Miller, T.J.: ‘Field-weakening performance of brushless synchronous AC motor drives’, IEE Proc. Electr. Power Appl., 1994, 141, (6), pp. 331340.
    6. 6)
      • 8. Tapia, J., Leonardi, F., Lipo, T.A.: ‘Consequent-pole permanent-magnet machine with extended field-weakening capability’, IEEE Trans. Ind. Appl., 2003, 39, (6), pp. 17041709.
    7. 7)
      • 3. Nasr, A., Hlioui, S., Gabsi, M., et al: ‘Design optimization of a hybrid-excited flux-switching machine for aircraft-safe DC power generation using a diode bridge rectifier’, IEEE Trans. Ind.Electron., 2017, 64, (12), pp. 98969904.
    8. 8)
      • 4. Amara, Y., Vido, L., Gabsi, M., et al: ‘Hybrid excitation synchronous machines: energy-efficient solution for vehicles propulsion’, IEEE Trans. Veh. Technol., 2009, 58, (5), pp. 21372149.
    9. 9)
      • 6. Henneberger, G., Minaglou, J., Ciorba, R.: ‘Design and test of permanent magnet synchronous motor with auxiliary excitation winding for electric vehicle application’. Proceeding of European Power Electronics Chapter Symp., Lausanne, Switzerland, October 1994, pp. 645649.
    10. 10)
      • 7. Fodorean, D., Djerdir, A., Viorel, I., et al: ‘A double excited synchronous machine for direct drive application-design and prototype tests’, IEEE Trans. Energy Convers., 2007, 22, (3), pp. 656665.
    11. 11)
      • 9. Li, Y., Lipo, T.A.: ‘A doubly salient permanent magnet motor capable of field weakening’. Proc. Annales Power Electronics Specialist Conf. (PESC), Atlanta, USA, 18–22 June 1995, vol. 1, pp. 565571.
    12. 12)
      • 15. Zhu, Z.Q., Howe, D.: ‘Influence of design parameters on cogging torque in permanent magnet machines’, IEEE Trans. Energy Convers., 2000, 15, (4), pp. 407412.
    13. 13)
      • 10. Hoang, E., Lecrivain, M., Gabsi, M.: ‘A new structure of a switching flux synchronous polyphased machine with hybrid excitation’. Proc. European Conf. on Power Electronics and Applications, Aalborg, Denmark, September 2007, pp. 18.
    14. 14)
      • 14. Hua, H., Zhu, Z.Q., Zhan, H.: ‘Novel consequent-pole hybrid excited machine with separated excitation stator’, IEEE Trans. Ind. Electrion., 2016, 63, (8), pp. 47184728.
    15. 15)
      • 13. Hua, W., Cheng, M., Zhu, Z.Q., et al: ‘Analysis and optimization of back EMF waveform of a flux-switching permanent magnet motor’, IEEE Trans. Energy Convers., 2008, 23, (3), pp. 727733.
    16. 16)
      • 5. Laldin, O., Sudhoff, S., Pekarek, S.: ‘Analysis and design of hybrid machines for DC generation’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 11921199.
    17. 17)
      • 12. Afinowi, I., Zhu, Z.Q., Guan, Y., et al: ‘Hybrid-excited doubly salient synchronous machine with permanent magnets between adjacent salient stator poles’, IEEE Trans. Magn., 2015, 51, (10), p. 8107909.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8174
Loading

Related content

content/journals/10.1049/joe.2018.8174
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading