Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Universal droop controller for DC–DC converter interfaces onto a modular multi-tiered DC microgrid

Microgrids are usually based on single voltage levels, supporting a number of distributed generation sources and loads. This paper describes a multi-tier DC microgrid, with multiple voltage levels able to source and supply different power demands. A universal droop controller is developed for this multi-tier microgrid, able to connect uni- and bi-directional elements on to the grid. Simulations are used to demonstrate the functionality of the controller to allow autonomous load sharing based on decentralised control, with bi-directional power transfer between tiers to balance supply and demand at each level. Power can also be directly sent from one element of the microgrid to another, which is demonstrated through simulation, allowing for integration with future peer-to-peer energy trading systems.

References

    1. 1)
      • 6. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled AC and DC microgrids 2014: A general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, pp. 158172.
    2. 2)
      • 3. Justo, J.J., Mwasilu, F., Lee, J., et al: ‘AC-microgrids versus DC-microgrids with distributed energy resources: A review’, Renew. Sust. Energy Rev., 2013, 24, pp. 387405.
    3. 3)
      • 4. Rodriguez-Diaz, E., Savaghebi, M., Vasquez, J.C., et al: ‘An overview of low voltage DC distribution systems for residential applications’. Proc. IEEE Int. Conf. Consumer Electron., Berlin, 2015.
    4. 4)
      • 5. de Brabandere, K., Bolsens, B., Van den Keybus, J., et al: ‘A voltage and frequency droop control method for parallel inverters’, IEEE Trans. Power Electron., 2007, 22, pp. 11071115.
    5. 5)
      • 12. Liu, N., Yu, X., Wang, C., et al: ‘Energy-sharing model with price-based demand response for microgrids of peer-to-peer prosumers’, IEEE Trans. Power Syst., 2017, 32, pp. 35693583.
    6. 6)
      • 10. Gonzalez-Longatt, F., Rajpurohit, B.S., Singh, S.N., et al: ‘Smart multi-terminal DC P-grids for autonomous zero-net energy buildings: implicit concepts’. Proc. IEEE Innovative Smart Grid Technologies – Asia, Bangkok, 2015.
    7. 7)
      • 11. Yoo, Y., Hwang, T., Kang, S., et al: ‘Peer-to-peer based energy trading system for heterogeneous small-scale DERs’. Proc. Int. Conf. on Inform. Commun. Tech. Convergence, Jeju, 2017.
    8. 8)
      • 9. IEEE Standards Association Working Group 2030.10: ‘Standard for DC microgrids for rural and remote electricity access applications’, [online]. Available at https://standards.ieee.org/develop/project/2030.10.html.
    9. 9)
      • 2. Kumar, D., Zare, F., Ghosh, A., et al: ‘DC microgrid technology: system architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects’, IEEE. Access., 2017, 5, pp. 1223012256.
    10. 10)
      • 1. Lasseter, R.H., Piagi, P.: ‘Microgrid: A conceptual solution’. Proc. IEEE Power Electronics Specialists Conf., Aachen, 2004.
    11. 11)
      • 13. Alvaro-Hermana, R., Fraile-Ardanuy, J., Zufiria, P.J., et al: ‘Peer to peer energy trading with electric vehicles’, IEEE Intell. Transp. Syst. Mag., 2016, 8, pp. 3344.
    12. 12)
      • 8. Williamson, S.J., Griffo, A., Stark, B.H., et al: ‘Control of parallel single-phase inverters in a low-head pico-hydro off-grid network’, Sustain. Energy, Grids Netw., 2016, 5, pp. 114124.
    13. 13)
      • 7. Monfared, M., Golestan, S., Guerrero, J.M., et al: ‘Analysis, design, and experimental verification of a synchronous reference frame voltage control for single-phase inverters’, IEEE Trans. Ind. Electron., 2014, 61, pp. 258269.
    14. 14)
      • 16. Khorsandi, A., Ashourloo, M., Mokhtari, H.: ‘An adaptive droop control method for low voltage DC microgrids’. Proc. Power Electronics, Drive Systems and Technologies Conf., Tehran, 2014.
    15. 15)
      • 15. Kitson, J., Williamson, S.J., Harper, P.W., et al: ‘Modelling of an expandable, reconfigurable, renewable DC microgrid for Off-grid communities’. Proc. Sustainable Energy and Environmental Protection Conf., Bled, 2017.
    16. 16)
      • 18. Williamson, S.J., Griffo, A., Stark, B.H., et al, ‘Modeling and simulation of a pico-hydropower off-grid network’, in Kishor, N., Fraile-Ardanuy, J. (Eds.): Modeling and dynamic behaviour of hydropower plants (The Institution of Engineering and Technology, Stevenage, 2017), pp. 225253.
    17. 17)
      • 14. Giotitsas, C., Pazaitis, A., Kostakis, V.: ‘A peer-to-peer approach to energy production’, Technol. Soc., 2015, 42, pp. 2838.
    18. 18)
      • 17. ‘Photovoltaic geographical information system’, [online]. Available at http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8163
Loading

Related content

content/journals/10.1049/joe.2018.8163
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address