Your browser does not support JavaScript!

access icon openaccess Hardware-in-the-loop test for real-time economic control of a DC microgrid

Microgrids (MGs) utilising both renewables and energy storage to optimise onsite energy consumption rather than importing power form the utility grid, require a tertiary-level energy management system (EMS). The EMS must monitor and control the energy exchange within the nodes of MG to maximise any solar energy generation and benefit from installed storage. This paper considers a single-family house as the MG that has DC distribution circuit model. The look-ahead EMS is formulated as a linear programming problem, which has been tested in both offline simulation and hardware-in-the-loop (HIL) simulation environment. The simulation results indicate that the proposed look-ahead EMS can effectively reduce the DC MG operation cost without any operational constraint violation. In addition, the proposed look ahead energy optimisation approach has the potential to be used in a large-scale system such as a community MG with multiple buildings.


    1. 1)
      • 21. Bélanger, J., Venne, P., Paquin, J.N.: ‘The what, where and why of real-time simulation’, Planet RT. 37-49, 2010.
    2. 2)
      • 13. Rodriguez-Diaz, E., Savaghebi, M., Vasquez, J.C., et alAn overview of low voltage DC distribution systems for residential applications’. 2015 IEEE 5th Int. Conf. on Consumer Electronics Berlin (ICCE-Berlin), Germany, 2015.
    3. 3)
      • 1. EU energy statistical pocketbook 2016. Available at
    4. 4)
      • 4. Xiao, J., Wang, P., Setyawan, L.: ‘Multilevel energy management system for hybridization of energy storages in DC microgrids’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 847856.
    5. 5)
      • 15. SMA, Sunny Boy 1.5 / 2.5. Available at
    6. 6)
      • 9. Shi, W., Li, N., Chu, C.C., et al: ‘Real-time energy management in microgrids’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 228238.
    7. 7)
      • 3. Tank, I., Mali, S.: ‘Renewable based microgrid with energy management system’. IEEE Int. Conf. on Signal Processing, Informatics, Communications, and Energy Systems (SPICES), Kozhikode, India, February 2015.
    8. 8)
      • 8. Ma, Y., Kelman, A., Daly, A., et al: ‘Predictive control for energy efficient buildings with thermal storage’, IEEE Control Syst. Mag., 2012, 32, (1), pp. 4464.
    9. 9)
      • 16. Vicor, VI-ARMx1xx. Available at
    10. 10)
      • 7. Ma, J., Qin, S.J., Li, B., et al: ‘Economic model predictive control for building energy systems’. Proc. Innovative Smart Grid Technologies, Anaheim, CA, January 2011, pp. 16.
    11. 11)
      • 14. Vicor, Isolated fixed ratio DC-DC converter, BCM6123xD1E5126yzz. Available at
    12. 12)
      • 6. Logenthiran, T., Sirnivasan, D., Khambadkone, A.M., et al: ‘Multiagaent system for real-time digital simulator’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 925933.
    13. 13)
      • 2. Ali, A., Farooq, A., Muhammad, Z., et al: ‘A review: DC microgrid control and energy management system’, Int. J. Electr. Electron. Sci., 2015, 2, (2), pp. 2430.
    14. 14)
      • 5. Pourmousavi, S.A., Nehrir, H., Colson, C.M., et al: ‘Real-time energy management of a stand-alone hybrid wind-microturbine energy system using particle swarm optimization’, IEEE Trans. Sust. Energy, 2010, 1, (3), pp. 193201.
    15. 15)
      • 20. Ali, M., Safdarian, A., Lehtonen, M.: ‘Demand response potential of residential HVAC loads considering users preferences’. 5th IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Istanbul, Turkey, October 2015.
    16. 16)
      • 19. Keil, P., Schuster, S.F., Wilhelm, J., et al: ‘Calendar aging of lithium-ion batteries_ impact of the graphite anode on capacity fade’, J. Electrochem. Soc., 2016, 163, (9), pp. A1872A1880.
    17. 17)
      • 18. Hentunen, A., Lehmuspelto, T., Suomela, J.: ‘Time-domain parameter extraction method for thevenin-equivalent circuit battery models’, IEEE Trans. Energy Convers., 2014, 29, (3), pp. 00.
    18. 18)
      • 12. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled AC and DC microgrids – a general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172.
    19. 19)
      • 11. Dizqah, A.M., Maheri, A., Busawon, K., et al: ‘A multivariable optimal energy management strategy for standalone DC microgrids’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 22782287.
    20. 20)
      • 10. Aung, H.N., Khambadkone, A.M., Srinivasan, D., et alAgent-based intelligent control for real-time operation of a microgrid’. Joint Int. Conf. on Power Electronics, Drives, and Energy Systems & Power india, New Delhi, India, December 2010.
    21. 21)
      • 17. ENF Solar. CSG PVTech Co., Ltd. CSGAAAM2. Available at

Related content

This is a required field
Please enter a valid email address