access icon openaccess Impact of DC protection strategy of large HVDC network on frequency response of the connected AC system

Integration of renewable energy generations requires the transmission of bulky power over long distance, and high-voltage direct current (HVDC) transmission systems become a more preferable choice compared to conventional HVAC systems. For HVDC systems, one of the important concerns is the DC protection strategy which can significantly impact on the connected AC system performance, e.g. system frequency. The maximum loss-of-infeed for a AC network is highly dependent on the duration of the power outage, and the impacts of DC fault protection arrangements which result in different speed of power restoration on the connected AC system, on the system frequency, have not been properly understood. Different DC protection arrangements using DC disconnectors, fast and slow DC circuit breakers on frequency response of the connected AC networks are investigated. A three-terminal meshed HVDC system is studied to demonstrate system behaviour during DC faults.

Inspec keywords: HVAC; HVDC power convertors; power transmission control; power grids; circuit breakers; HVDC power transmission

Other keywords: power restoration; power outage; frequency response; DC faults; DC circuit breakers; renewable energy generations; AC network; DC disconnectors; system frequency; system behaviour; DC fault protection arrangements; DC protection strategy; HVDC network; HVDC systems; connected AC networks; bulky power; connected AC system; high-voltage direct current transmission systems; three-terminal meshed HVDC system; different DC protection arrangements; conventional HVAC systems

Subjects: Switchgear; Power convertors and power supplies to apparatus; d.c. transmission; Control of electric power systems; Power system control

References

    1. 1)
      • 12. Greiner, C.J., Langeland, T., Solvik, J., et al: ‘Availability evaluation of multi-terminal DC networks with DC circuit breakers’. 2011 IEEE Trondheim PowerTech, Trondheim, Norway, 2011, pp. 18.
    2. 2)
      • 10. Weissbach, T., Welfonder, E.: ‘High frequency deviations within the european power system: origins and proposals for improvement’. 2009 IEEE/PES Power Systems Conf. and Exposition, Seattle, WA, USA, 2009, pp. 16.
    3. 3)
      • 16. Sanusi, W., Hosani, M.A., Moursi, M.S.E.: ‘A novel DC fault ride-through scheme for MTDC networks connecting large-scale wind parks’, IEEE Trans. Sustain. Energy, 2017, 8, pp. 10861095.
    4. 4)
      • 2. Blau, J.: ‘Europe plans a North Sea grid’, IEEE Spectr., 2010, 47, pp. 1213.
    5. 5)
      • 20. Wen, W., Huang, Y., Cheng, T., et al: ‘Research on a current commutation drive circuit for hybrid dc circuit breaker and its optimisation design’, IET Gener. Transm. Distrib., 2016, 10, pp. 31193126.
    6. 6)
      • 5. Adeuyi, O.D., Cheah-Mane, M., Liang, J., et al: ‘Fast frequency response from offshore multiterminal VSC-HVDC schemes’, IEEE Trans. Power Deliv., 2017, 32, pp. 24422452.
    7. 7)
      • 11. Yang, J., Fletcher, J.E., Reilly, J.O.: ‘Short-circuit and ground fault analyses and location in VSC-based DC network cables’, IEEE Trans. Ind. Electron., 2012, 59, pp. 38273837.
    8. 8)
      • 21. Garcia, W.R.L., Bertinato, A., Tixador, P., et al: ‘Full-selective protection strategy for MTDC grids based on R-type superconducting FCLs and mechanical DC circuit breakers’. 5th IET Int. Conf. on Renewable Power Generation (RPG) 2016, London, UK, 2016, pp. 17.
    9. 9)
      • 1. Hertem, D.V., Ghandhari, M., DelimarL, M.: ‘Technical limitations towards a SuperGrid–A european prospective’. 2010 IEEE Int. Energy Conf., Manama, Bahrain, 2010, pp. 302309.
    10. 10)
      • 14. Tang, L., Ooi, B.T.: ‘Locating and isolating DC faults in multi-terminal DC systems’, IEEE Trans. Power Deliv., 2007, 22, pp. 18771884.
    11. 11)
      • 19. Lianxiang, T., Boon-Teck, O.: ‘Protection of VSC-multi-terminal HVDC against DC faults’. 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conf. Proc. (Cat. No.02CH37289), Cairns, Australia, 2002, vol. 2, pp. 719724.
    12. 12)
      • 18. Peralta, J., Saad, H., Dennetiere, S., et al: ‘Detailed and averaged models for a 401-level MMC-HVDC system’, IEEE Trans. Power Deliv., 2012, 27, pp. 15011508.
    13. 13)
      • 13. Baran, M.E., Mahajan, N.R.: ‘Overcurrent protection on voltage-source-converter-based multiterminal DC distribution systems’, IEEE Trans. Power Deliv., 2007, 22, pp. 406412.
    14. 14)
      • 9. Eriksen, P.B., Ackermann, T., Abildgaard, H., et al: ‘System operation with high wind penetration’, IEEE Power Energy Mag., 2005, 3, pp. 6574.
    15. 15)
      • 7. Rafferty, J., Xu, L., Wang, Y., et al: ‘Frequency support using multi-terminal HVDC systems based on DC voltage manipulation’, IET Renew. Power Gener., 2016, 10, pp. 13931401.
    16. 16)
      • 6. Chaudhuri, N.R., Majumder, R., Chaudhuri, B.: ‘System frequency support through multi-terminal DC (MTDC) grids’. 2013 IEEE Power and Energy Society General Meeting, Vancouver, Canada, 2013, pp. 11.
    17. 17)
      • 15. Cui, S., Sul, S.K.: ‘A comprehensive DC short-circuit fault ride through strategy of hybrid modular multilevel converters (MMCs) for overhead line transmission’, IEEE Trans. Power Electron., 2016, 31, pp. 77807796.
    18. 18)
      • 8. Meegahapola, L., Flynn, D.: ‘Impact on transient and frequency stability for a power system at very high wind penetration’. IEEE PES General Meeting, Minneapolis, MI, USA, 2010, pp. 18.
    19. 19)
      • 3. Negnevitsky, M., Nguyen, D.H., Piekutowski, M.: ‘Risk assessment for power system operation planning with high wind power penetration’, IEEE Trans. Power Syst., 2015, 30, pp. 13591368.
    20. 20)
      • 17. Kundur, P., Paserba, J., Ajjarapu, V., et al: ‘Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions’, IEEE Trans. Power Syst., 2004, 19, pp. 13871401.
    21. 21)
      • 4. Li, Y., Xu, Z., Østergaard, J., et al: ‘Coordinated control strategies for offshore wind farm integration via VSC-HVDC for system frequency support’, IEEE Trans. Energy Convers., 2017, 32, pp. 843856.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8150
Loading

Related content

content/journals/10.1049/joe.2018.8150
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading