access icon openaccess Winding arrangement and design development for fault tolerant EPS systems

Driverless cars are expected to become a reality over the next 20 years. The sub-systems within these vehicles will require increased fault tolerance and capability. This is in addition to the already high reliability, efficiency, and performance of today's systems such as electric power steering (EPS). This paper presents a motor design development of such an auxiliary system. Predicted performance of various double-layer and single-layer options are presented and contrasted.

Inspec keywords: fault tolerance; electric motors; steering systems

Other keywords: electric power steering; winding arrangement; increased fault tolerance; driverless cars; fault tolerant EPS systems; auxiliary system; motor design development

Subjects: Vehicle mechanics; Control technology and theory (production)

References

    1. 1)
      • 6. Akhondi, H., Abdi, B.: ‘Optimal design of a fault- tolerant IPM motor with high torque density for electric power steering system’. Proc. of the 12th WSEAS Int. Conf. Mathematical Methods and Computational Techniques in Electrical Engineering, Romania, 2010, pp. 134139.
    2. 2)
      • 8. Bianchi, N., Pre, M.D., Bolognani, S.: ‘Design of a fault-tolerant IPM motor for electric power steering’, IEEE Trans. Veh. Technol., 2006, 55, pp. 11021111.
    3. 3)
      • 13. McDonald, S., Atkinson, G., Smith, D., et al: ‘Overcoming the challenges of ‘drag torque’ in a dual-lane actuator for an aircraft’. 2014 Int. Conf. Electrical Machines (ICEM), Berlin, Germany, 2014, pp. 21202126.
    4. 4)
      • 24. Bianchi, N., Bolognani, S., Pre, M.D., et al: ‘Design considerations for fractional-slot winding configurations of synchronous machines’, IEEE Trans. Ind. Appl., 2006, 42, pp. 9971006.
    5. 5)
      • 18. Schiferl, R., Lipo, T.A.: ‘Power capability of salient pole permanent magnet synchronous motors in variable speed drive applications’. Conf. Record of the 1988 IEEE Industry Applications Society Annual Meeting, Pittsburgh, PA, USA, 1988, pp. 2331.
    6. 6)
      • 5. Qun, Z., Juhua, H.: ‘Modeling and simulation of the electric power steering system’. Pacific-Asia Conf. on Circuits, Communications and Systems, Chengdu, 2009, pp. 236239.
    7. 7)
      • 17. Jahns, T.M.: ‘Flux-weakening regime operation of an interior permanent-magnet synchronous motor drive’, IEEE Trans. Ind. Appl., 1987, IA-23, (4) pp. 681689.
    8. 8)
      • 25. Dutta, R., Chong, L., Rahman, M.: ‘Design and experimental verification of an 18-slot/14-pole fractional-slot concentrated winding interior permanent magnet machine’, IEEE Trans. Energy Convers., 2013, 28, pp. 181190.
    9. 9)
      • 23. Wang, J., Atallah, K., Zhu, Z.-Q., et al: ‘Modular three-phase permanent-magnet brushless machines for in-wheel applications’, IEEE Trans. Veh. Technol., 2008, 57, pp. 27142720.
    10. 10)
      • 9. Murakami, H., Kataoka, H., Honda, Y., et al: ‘Highly efficient brushless motor design for an air-conditioner of the next generation 42 V vehicle’. Thirty-Sixth IAS Annual Meeting Conf. Record of the 2001 IEEE Industry Applications Conf., 2001, Chicago, IL, USA, 2001, pp. 461466.
    11. 11)
      • 2. Wang, C.F., Shen, J.-X., Luk, P.C.-K., et al: ‘Design issues of an IPM motor for EPS’, COMPEL - Int. J. Comput. Maths. Electr. Electron. Eng., 2011, 31, pp. 7187.
    12. 12)
      • 3. Marouf, A., Sentouh, C., Djemai, M., et al: ‘Control of an electric power assisted steering system using reference model’. 2011 50th IEEE Conf. Decision and Control and European Control Conf., Orlando, FL, 2011, pp. 66846690.
    13. 13)
      • 20. Jahns, T.M., Caliskan, V.: ‘Uncontrolled generator operation of interior PM synchronous machines following high-speed inverter shutdown’, IEEE Trans. Ind. Appl., 1999, 35, pp. 13471357.
    14. 14)
      • 19. Liaw, C.-Z., Soong, W.L., Welchko, B.A., et al: ‘Uncontrolled generation in interior permanent- magnet machines’, IEEE Trans. Ind. Appl., 2005, 41, pp. 945954.
    15. 15)
      • 22. Spargo, C., Mecrow, B., Widmer, J.: ‘Application of fractional slot concentrated windings to synchronous reluctance machines’. 2013 IEEE Int. Electric Machines & Drives Conf. (IEMDC), Chicago, IL, USA, 2013, pp. 618625.
    16. 16)
      • 7. Jack, A.G., Mecrow, B.C., Haylock, J.A.: ‘A comparative study of permanent magnet and switched reluctance motors for high-performance fault-tolerant applications’, IEEE Trans. Ind. Appl., 1996, 32, pp. 889895.
    17. 17)
      • 12. McCrow, B., Jack, A., Atkinson, D., et al: ‘Fault tolerant drives for safety critical applications’. IEE Colloquium on New Topologies for Permanent Magnet Machines (Digest No: 1997/090), London, UK, 1997, pp. 5/15/7.
    18. 18)
      • 27. Chu, W., Zhu, Z.: ‘Investigation of torque ripples in permanent magnet synchronous machines with skewing’, IEEE Trans. Magn., 2013, 49, pp. 12111220.
    19. 19)
      • 16. Zhu, Z., Chan, C.: ‘Electrical machine topologies and technologies for electric, hybrid, and fuel cell vehicles’. 2008 IEEE Vehicle Power and Propulsion Conf., Harbin, China, 2008, pp. 16.
    20. 20)
      • 14. Mitcham, A.J., Antonopoulos, G., Cullen, J.J.A.: ‘Favourable slot and pole number combinations for fault- tolerant PM machines’, IEE Proc., Electr. Power Appl., 2004, 151, pp. 520525.
    21. 21)
      • 4. Burton, A.W.: ‘Innovation drivers for electric power- assisted steering’, IEEE Control Syst., 2003, 23, pp. 3039.
    22. 22)
      • 15. Hendershot, J.R., Miller, T.J.E.: ‘Design of brushless permanent-magnet machines’ (Motor Design Books, Venice, FL, USA, 2010).
    23. 23)
      • 26. Barcaro, M., Bianchi, N., Fornasiero, E., et al: ‘Experimental comparison between two fault- tolerant fractional-slot multiphase PM motor drives’. 2010 IEEE Int. Symp. on Industrial Electronics, Bari, Italy, 2010, pp. 21602165.
    24. 24)
      • 21. El-Refaie, A.M.: ‘Fractional-slot concentrated- windings synchronous permanent magnet machines: opportunities and challenges’, IEEE Trans. Ind. Electron., 2010, 57, pp. 107121.
    25. 25)
      • 1. Wu, J., Li, Q., Song, D.-Y., et al: ‘Energy saving analysis using pulse width modulation techniques controlling electromagnetic clutch in EPS system’. Asia-Pacific Conf. Information Processing, 2009. APCIP 2009, Shenzhen, China, 2009, pp. 394397.
    26. 26)
      • 11. Mecrow, B.C., Jack, A.G., Atkinson, D.J., et al: ‘Design and testing of a four-phase fault-tolerant permanent-magnet machine for an engine fuel pump’, IEEE Trans. Energy Convers., 2004, 19, pp. 671678.
    27. 27)
      • 10. Jahns, T.M., Kliman, G.B., Neumann, T.W.: ‘Interior permanent-magnet synchronous motors for adjustable-speed drives’, IEEE Trans. Ind. Appl., 1986, IA-22, (4), pp. 738747.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8109
Loading

Related content

content/journals/10.1049/joe.2018.8109
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading