http://iet.metastore.ingenta.com
1887

access icon openaccess Electromagnetic performance with and without considering the impact of rotation on convective cooling

Loading full text...

Full text loading...

/deliver/fulltext/joe/2019/17/JOE.2018.8024.html;jsessionid=q8qnpxpe78v5.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8024&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Kim, K.-C.: ‘Driving characteristic analysis of traction motors for electric vehicle by using FEM’. Proc. ANSYS Users Conf., Seoul, Korea, October 2014.
    2. 2)
      • 2. Goss, J., Popescu, M., Staton, D., et al: ‘Electrical vehicles – practical solutions for power traction drive systems’. Proc. IEEE Workshop Electrical Machines Design, Control and Diagnosis, Nottingham, 2017, pp. 8088. doi: 10.1109/WEMDCD.2017.7947728.
    3. 3)
      • 3. Chong, Y.C.: ‘Thermal analysis and air flow modelling of electrical machines’. Ph.D. Dissertation, University of Edinburgh, Edinburgh, UK, 2015.
    4. 4)
      • 4. David, M.W.: ‘Heat transfer and fluid flow in rotating coolant channels’ (Research Studies Press, Letchworth, 1981).
    5. 5)
      • 5. Chong, Y.C., Staton, D.A., Mueller, M.A., et al: ‘An experimental study of rotational pressure loss in rotor ducts’. Proc. 14th UK Heat Transfer Conf., Edinburgh, UK, 2015.
    6. 6)
      • 6. Staton, D., Boglietti, A., Cavagnino, A.: ‘Solving the more difficult aspects of electric motor thermal analysis in small and medium size industrial induction motors’, IEEE Trans. Energy Convers., 2005, 20, (3), pp. 620628.
    7. 7)
      • 7. Kaye, J., Elgar, E.: ‘Modes of adiabatic and diabatic fluid flow in an annulus with an inner rotating cylinder’, Trans. ASME, 1958, 80, pp. 753765.
    8. 8)
      • 8. Mills, A.F.: ‘Heat transfer’ (Prentice-Hall, NJ, USA, 1999, 2nd edn.).
    9. 9)
      • 9. Tachibana, F., Fukui, S.: ‘Convective heat transfer of the rotational and axial flow between two concentric cylinders’, Bull. Jpn. Soc. Mech. Eng., 1964, 7, (26), pp. 385391.
    10. 10)
      • 10. Gazley, C.: ‘Heat transfer characteristics of the rotational and axial flow between concentric cylinders’, Trans. ASME, 1958, 80, pp. 7990.
    11. 11)
      • 11. Kuzay, T.M., Scott, C.J.: ‘Turbulent heat transfer studies in annulus with inner cylinder rotation. Transactions of the ASME American society of mechanical engineers’, Int. J. Heat Mass Transf., 1977, 99, pp. 1219.
    12. 12)
      • 12. Childs, P., Turner, A.B.: ‘Heat transfer on the surface of a cylinder rotating in an annulus at high axial and rotational Reynolds numbers’. Proc. 10th Int. Heat Transfer Conf., Brighton, 1994, pp. 1318.
    13. 13)
      • 13. Mellor, P.H., Roberts, D., Turner, D.R.: ‘Lumped parameter thermal model for electrical machines of TEFC design’, IEE Proc. B – Electr. Power Appl., 1991, 138, (5), pp. 205218.
    14. 14)
      • 14. DiGerlando Vistoili, A.I.: ‘Thermal networks of induction motors for steady state and transient operation analysis’. Proc. ICEM, Paris, 1994.
    15. 15)
      • 15. Schubert, E.: ‘Heat transfer coefficients at end winding and bearing covers of enclosed asynchronous machines’, Elektrie, 1968, 22, pp. 160162.
    16. 16)
      • 16. Stokum, G.: ‘Use of the results of the four-heat run method of induction motors for determining thermal resistance’, Elektrotechnika, 1969, 62, (6), pp. 219232.
    17. 17)
      • 17. Hamdi, E.S.: ‘Design of small electrical machines’ (Wiley, Chichester, 1994).
    18. 18)
      • 18. Basso, G.L., Goss, J.Y., Chong, C., et al: ‘Improved thermal model for predicting end-windings heat transfer’. Proc. IEEE Energy Conversion Congress and Exposition, Cincinnati, OH, 2017, pp. 46504657. doi: 10.1109/ECCE.2017.8096794.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8024
Loading

Related content

content/journals/10.1049/joe.2018.8024
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address