access icon openaccess Comparison of damping techniques for the soft-stop of ultra-fast linear actuators for HVDC breaker applications

This paper assesses the advantages, drawbacks, and overall suitability of different soft-stop techniques to provide smooth deceleration of ultra-fast linear actuators used in hybrid HVDC breaker designs, with the help of FEA simulations. The paper compares active and passive damping techniques in terms of efficacy, energy consumption, and interference with the ultra-fast operation needed from the actuator. The possibility of combining active and passive damping techniques is discussed.

Inspec keywords: energy consumption; finite element analysis; electric actuators; circuit breakers; HVDC power transmission

Other keywords: energy consumption; ultra-fast linear actuators; active damping techniques; interference; hybrid HVDC breaker designs; passive damping techniques; soft-stop techniques; FEA simulations; HVDC breaker applications

Subjects: d.c. transmission; Control gear and apparatus; Finite element analysis; Switchgear

References

    1. 1)
      • 15. Bissal, A., Magnusson, J., Engdahl, G.: ‘Electric to mechanical energy conversion of linear ultrafast electromechanical actuators based on stroke requirements’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 30593067.
    2. 2)
      • 5. Pei, X., Smith, A.C., Barnes, M.: ‘FCL/B: an integrated VSC-HVDC fault current limiter/breaker, task 1.6 SFCL (Supplementary)’. Internal report, January 2017.
    3. 3)
      • 16. Vilchis-Rodriguez, D.S., Shuttleworth, R., Barnes, M.: ‘Finite element assessment of moving coil actuator for HVDC breaker applications’. IECON 2016 – 42nd Annual Conf. of the IEEE Industrial Electronics Society, Florence, 2016, pp. 42814286.
    4. 4)
      • 20. Wen, W., Huang, Y., Al-Dweikat, M., et al: ‘Research on operating mechanism for ultra-fast 40.5-kV vacuum switches’, IEEE Trans. Power Deliv., 2015, 30, (6), pp. 25532560.
    5. 5)
      • 6. Wang, Y., Marquardt, R.: ‘A fast switching, scalable DC-breaker for meshed HVDC-SuperGrids’. PCIM Europe 2014, Nuremberg, Germany, 2014, pp. 17.
    6. 6)
      • 2. Callavik, M., Blomberg, A.: ‘The hybrid HVDC breaker – an innovation breakthrough enabling reliable HVDC grids’. ABB Gris systems, November 2012.
    7. 7)
      • 14. Puumala, V., Kettunen, L.: ‘Electromagnetic design of ultrafast electromechanical switches’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 11041109.
    8. 8)
      • 21. Peng, C., Mackey, L., Husain, I., et al: ‘Active damping of ultra-fast mechanical switches for hybrid AC and DC circuit breakers’. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, 2016, pp. 18.
    9. 9)
      • 18. Wu, Y., Wu, Y., Rong, M.: ‘A New Thomson coil actuator: principle and analysis’, IEEE Trans. Compon. Packag. Manuf. Technol., 2015, 5, (11), pp. 16441655.
    10. 10)
      • 12. Holaus, W., Frohlich, K.: ‘Ultra-fast switches – a new element for medium voltage fault current limiting switchgear’. 2002 IEEE Power Engineering Society Winter Meeting Conf., New York, USA, 2002, vol. 1, pp. 299304.
    11. 11)
      • 7. Ängquist, L., Norrga, S., Modéer, T.: ‘A new dc breaker with reduced need for semiconductors’. 18th European Conf. on Power Electronics and Applications (EPE'16 ECCE Europe), Karlsruhe, 2016, pp. 19.
    12. 12)
      • 3. Davidson, C.C., Whitehouse, R.S., Barker, C.D., et al: ‘A new ultra-fast HVDC circuit breaker for meshed DC networks’. 11th IET Int. Conf. on AC and DC Power Transmission, Birmingham, 2015, pp. 17.
    13. 13)
      • 17. Pei, X., Smith, A.C., Shuttleworth, R., et al: ‘Fast operating moving coil actuator for a vacuum interrupter’, IEEE Trans. Energy Convers., 2017, 32, (3), pp. 931940.
    14. 14)
      • 13. Bissal, A., Magnusson, J., Engdahl, G.: ‘Comparison of two ultra-fast actuator concepts’, IEEE Trans. Magn., 2012, 48, (11), pp. 33153318.
    15. 15)
      • 19. Cikanek, S.R., Bailey, K.E.: ‘Regenerative braking system for a hybrid electric vehicle’. Proc. of the 2002 American Control Conf., Anchorage, AK, USA, 2002, vol. 4, pp. 31293134.
    16. 16)
      • 10. ‘Siemens uses vacuum interrupters for the first time in high voltage switch gear up to 145 kV’. Available at http://www.siemens.com/press/PR2016080369EMEN, accessed 15 January 2018.
    17. 17)
      • 11. Eaton Vacuum Interrupter Product Guide, 2011.
    18. 18)
      • 8. Magnusson, J., Saers, R., Liljestrand, L.: ‘The commutation booster, a new concept to aid commutation in hybrid DC-breakers’. CIGRE, Lund, 2015.
    19. 19)
      • 4. Cwikowski, O., Shuttleworth, R., Barnes, M.: ‘Apparatus and method for controlling a DC current’. Patent WO 2014/177874 A2, 6 November 2014.
    20. 20)
      • 1. Franck, C.M.: ‘HVDC circuit breakers: a review identifying future research needs’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 9981007.
    21. 21)
      • 9. ‘8VM1 blue GIS for up to 72.5 kV’. Available at http://siemens.com/hv-gis/8VM1, accessed 2 February 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8001
Loading

Related content

content/journals/10.1049/joe.2018.8001
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading