access icon openaccess PAPR reduction in OFDM using scaled particle swarm optimisation based partial transmit sequence technique

Partial transmit sequence (PTS) is one of the effective techniques for reducing the peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. PTS technique has some issues such as higher computational complexity due to its exhaustive searching of optimal phase factors. In order to overcome this drawback, a scaled particle swarm optimisation algorithm is applied to PTS technique to find the optimal phase factors for reducing the PAPR at a faster convergence rate and lower computational complexity. A scaling factor has been introduced in the velocity updating equation of conventional particle swarm optimisation (PSO) to increase the inertia weight and velocity of the particle, thereby providing faster convergence to the optimum value as well as reducing PAPR effectively. From the simulation results obtained, it can be observed that the proposed scaled PSO-PTS algorithm reduces PAPR effectively and is most suitable for applications with the 64-QAM modulation scheme.

Inspec keywords: particle swarm optimisation; computational complexity; quadrature amplitude modulation; OFDM modulation

Other keywords: higher computational complexity; PAPR reduction; (OFDM) systems; faster convergence rate; effective techniques; velocity updating equation; PAPR effectively; scaling factor; scaled particle swarm optimisation algorithm; optimal phase factors; inertia weight; peak-to-average power ratio; scaled PSO-PTS algorithm; conventional particle swarm optimisation; exhaustive searching; lower computational complexity; PTS technique; partial transmit sequence technique; orthogonal frequency division

Subjects: Optimisation techniques; Other topics in statistics; Optimisation techniques; Modulation and coding methods; Radio links and equipment

References

    1. 1)
      • 25. Davis, J.A., Jedwab, J.: ‘Peak-to-mean power control in OFDM, Golay complementary sequences, and reed-Muller codes’, IEEE Trans. Inf. Theory, 1999, 45, (7), pp. 23972417.
    2. 2)
      • 49. Padhy, N.P., Simon, S.P.: ‘Soft computing: with MATLAB programming’ (Oxford University Press, Oxford, 2015).
    3. 3)
      • 51. Helwi, S., Neumann, F., Wanka, R.: ‘Particle swarm optimization with velocity adaptation’. Proc. IEEE Int. Conf. Adaptive and Intelligent Systems, 2009. ICAIS'09, Klagenfurt, Austria, September 2009, pp. 146151.
    4. 4)
      • 55. Jawhar, Y.A., Abdulhasan, R.A., Ramli, K.N.: ‘Influencing parameters in peak to average power ratio performance on orthogonal frequency-division multiplexing system’, ARPN J. Eng. Appl. Sci., 2016, 11, (6), pp. 43224332.
    5. 5)
      • 26. Joshi, A., Bhardwaj, D., Saini, D.S.: ‘PAPR reduction in OFDM with FEC (RS-CC and Turbo coding) using DHT precoding’. Proc. of IEEE Int. Symp. on Instrumentation & Measurement, Sensor Network and Automation (IMSNA), Sanya, China, August 2012, vol. 1, pp. 1418.
    6. 6)
      • 6. Chen, G., Ansari, R., Yao, Y.: ‘Improved peak windowing for PAPR reduction in OFDM’. Proc. IEEE 69th Vehicular Technology Conf. VTC Spring 2009, Barcelona, Spain, April 2009, pp. 15.
    7. 7)
      • 24. Yang, K., Chang, S.I.: ‘Peak-to-average power control in OFDM using standard arrays of linear block codes’, IEEE Commun. Lett., 2003, 7, (4), pp. 174176.
    8. 8)
      • 56. Bharti, V., Vinay, T.: ‘Analysis of various influencing factors on peak to average power ratio in OFDM systems’, Int. J. Eng. Res. Technol., 2013, 2, (8), pp. 755776.
    9. 9)
      • 58. Rajni, R., Sikri, G.: ‘Reducing peak to average power ratio by classical clipping over BPSK and QPSK in OFDM systems’. Proc. of IJCA Int. Conf. on Recent Advances and Future Trends in Information Technology (iRAFIT), March 2012, no. 8, pp. 2628.
    10. 10)
      • 48. Lee, J.: ‘802.16 e mobile WiMAX key RF receiver requirements’.
    11. 11)
      • 38. Chen, Z., Zhang, S., Yang, L., et al: ‘Optimal phase searching of PTS using modified genetic algorithm for PAPR reduction in OFDM systems’, Sci. China Inform. Sci., 2014, 57, (6), pp. 111.
    12. 12)
      • 50. Liu, J., Mei, Y., Li, X.: ‘An analysis of the inertia weight parameter for binary particle swarm optimization’, IEEE Trans. Evol. Comput., 2016, 20, (5), pp. 666681.
    13. 13)
      • 7. Van Nee, R., Wild, A.D.: ‘Reducing the peak-to-average power ratio of OFDM’. 48th IEEE Vehicular Technology Conf., Ottawa, Canada, May 1998, vol. 3, pp. 20722076.
    14. 14)
      • 47. Andrews, J.G., Ghosh, A., Muhamed, R: ‘Fundamentals of WiMAX: understanding broadband wireless networking’ (Pearson Education, London, 2007).
    15. 15)
      • 12. Cimini, L.J., Sollenberger, N.R.: ‘Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences’, IEEE Commun. Lett., 2000, 4, (3), pp. 8688.
    16. 16)
      • 45. Hung, H.L., Huang, Y.F.: ‘Peak-to-average power ratio reduction in orthogonal frequency division multiplexing system using differential evolution-based partial transmit sequences scheme’, IET Commun., 2012, 6, (11), pp. 14831488.
    17. 17)
      • 36. Kaur, P., Singh, M.: ‘Performance analysis of GA-PTS for PAPR reduction in OFDM system’. Proc. of IEEE Int. Conf. on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 2016, pp. 20762079.
    18. 18)
      • 31. Parandoosh, A.A., Taghipour, J., Vakili, V.T.: ‘A novel particle swarm optimization for PAPR reduction of OFDM systems’. IEEE Int. Conf. Control Engineering and Communication Technology (ICCECT), Liaoning, China, December 2012, pp. 681684.
    19. 19)
      • 46. Weng, C.E., Chang, C.W., Chen, C.H., et al: ‘Novel low-complexity partial transmit sequences scheme for PAPR reduction in OFDM systems using adaptive differential evolution algorithm’, Wirel. Pers. Commun., 2013, 71, (1), pp. 679694.
    20. 20)
      • 4. Li, X., Cimini, L.J.: ‘Effects of clipping and filtering on the performance of OFDM’. Proc. IEEE 47th Vehicular Technology Conf., Phoenix, USA, May 1998, vol. 3, pp. 16341638..
    21. 21)
      • 2. Hanzo, L., Münster, M., Choi, B., et al: ‘OFDM and MC-CDMA for broadband multi-user communications, WLANs and broadcasting’ (John Wiley & Sons, Hoboken, 2005).
    22. 22)
      • 32. Taghipour, J., Parandoosh, A.A., Vakili, V.T.: ‘An agent based particle swarm optimization for PAPR reduction of OFDM systems’. 20th IEEE Telecommunications Forum (TELFOR), Belgrade, Serbia, November 2012, pp. 839842.
    23. 23)
      • 18. Jayalath, A.D.S., Tellambura, C.: ‘The use of interleaving to reduce the peak-to-average power ratio of an OFDM signal’. Proc. IEEE Global Telecommunications Conf., San Francisco, USA, 2000, vol. 1, pp. 8286.
    24. 24)
      • 11. Jeon, H.B, No, J.S., Shin, D.J.: ‘A new PAPR reduction scheme using efficient peak cancellation for OFDM systems’, IEEE Trans. Broadcast., 2012, 58, (4), pp. 619628.
    25. 25)
      • 13. Muller, S.H., Huber, J.B.: ‘OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences’, Electron. Lett., 1997, 33, (5), pp. 368369.
    26. 26)
      • 33. Gao, J., Wang, J., Wang, B.: ‘Improved particle swarm optimization for PAPR reduction of OFDM systems’. 2010 Int. Conf. on Networking, Sensing and Control (ICNSC), Chicago, USA, April 2010, pp. 621624.
    27. 27)
      • 14. Kang, S.G, Kim, J.G., Joo, E.K.: ‘A novel subblock partition scheme for partial transmit sequence OFDM’, IEEE Trans. Broadcast., 1999, 45, (3), pp. 333338.
    28. 28)
      • 8. Jiang, T., Yang, Y., Song, Y.H.: ‘Exponential companding technique for PAPR reduction in OFDM systems’, IEEE Trans. Broadcast., 2005, 51, (2), pp. 244248.
    29. 29)
      • 20. Krongold, B.S., Jones, D.L.: ‘PAR reduction in OFDM via active constellation extension’, IEEE Trans. Broadcast., 2003, 49, (3), pp. 258268.
    30. 30)
      • 53. Kaveh, A.: ‘Particle swarm optimization’, in ‘Advances in metaheuristic algorithms for optimal design of structures’ (Springer, Switzerland, 2014), pp. 940.
    31. 31)
      • 15. Lee, Y.L., You, Y.H., Jeon, W.G., et al: ‘Peak-to-average power ratio in MIMO-OFDM systems using selective mapping’, IEEE Commun. Lett., 2003, 7, (12), pp. 575577.
    32. 32)
      • 23. Mobasher, A., Khandani, A.K.: ‘PAPR reduction in OFDM systems using constellation shaping’. Proc. of the 22nd Biennial Symp. on Communications, Ottawa, Canada, 2004, pp. 258260.
    33. 33)
      • 21. Bae, K., Andrews, J.G., Powers, E.J.: ‘Adaptive active constellation extension algorithm for peak-to-average ratio reduction in OFDM’, IEEE Commun. Lett., 2010, 14, (1), pp. 3941.
    34. 34)
      • 43. Jiang, T., Xiang, W., Richardson, P.C., et al: ‘PAPR reduction of OFDM signals using partial transmit sequences with low computational complexity’, IEEE Trans. Broadcast., 2007, 53, (3), pp. 719724.
    35. 35)
      • 5. Wang, L., Tellambura, C.: ‘A simplified clipping and filtering technique for PAR reduction in OFDM systems’, IEEE Signal Process. Lett., 2005, 12, (6), pp. 453456.
    36. 36)
      • 22. Saul, A.: ‘Generalized active constellation extension for peak reduction in OFDM systems’. Proc. IEEE Int. Conf. on Communications (ICC), Seoul, South Korea, May 2005, vol. 3, pp. 19741979.
    37. 37)
      • 34. Bouhlel, A., Sakly, A., Mansouri, M.N.: ‘Partial transmit sequence technique based on particle swarm optimization for WOFDM PAPR reduction’. Proc. 2nd IEEE Int. Conf. on Advanced Technologies for Signal and Image Processing (ATSIP), Monastir, Tunisia, March 2016, pp. 710714.
    38. 38)
      • 17. Yoo, S., Yoon, S., Kim, S.Y., et al: ‘A novel PAPR reduction scheme for OFDM systems: selective mapping of partial tones (SMOPT)’, IEEE Trans. Consum. Electron., 2006, 52, (1), pp. 4043.
    39. 39)
      • 39. Liang, H., Chen, Y.R., Huang, Y.F., et al: ‘A modified genetic algorithm PTS technique for PAPR reduction in OFDM systems’. Proc. of IEEE 15th Asia-Pacific Conf. on Communications (APCC), Shanghai, China, October 2009, pp. 182185.
    40. 40)
      • 1. Nuaymi, L.: ‘WiMAX: technology for broadband wireless access’ (John Wiley & Sons, Hoboken, 2007).
    41. 41)
      • 19. Han, S.H., Cioffi, J.M., Lee, J.H.: ‘Tone injection with hexagonal constellation for peak-to-average power ratio reduction in OFDM’, IEEE Commun. Lett., 2006, 10, (9), pp. 646648.
    42. 42)
      • 54. Hung, H.L.: ‘Using evolutionary computation technique for trade-off between performance peak-to average power ration reduction and computational complexity in OFDM systems’, Comput. Electr. Eng., 2011, 37, (1), pp. 5770.
    43. 43)
      • 42. Shukla, J., Joshi, A., Bansal, R., et al: ‘PAPR reduction of OFDM systems using PTS with genetic algorithm at low computational complexity’. Proc. of IEEE Recent Advances and Innovations in Engineering (ICRAIE), Jaipur, India, May 2014, pp. 16.
    44. 44)
      • 41. Zhang, Y., Ni, Q., Chen, H.H., et al: ‘An intelligent genetic algorithm for PAPR reduction in a multi-carrier CDMA wireless system’. Proc. of IEEE Int. Wireless Communications and Mobile Computing Conf. (IWCMC), Crete Island, Greece, August 2008, pp. 10521057.
    45. 45)
      • 29. Wen, J.H., Lee, S.H., Huang, Y.F., et al: ‘A suboptimal PTS algorithm based on particle swarm optimization technique for PAPR reduction in OFDM systems’, EURASIP J. Wirel. Commun. Netw., 2008, 2008, (1), p. 601346.
    46. 46)
      • 44. Wang, X., He, S., Zhu, T.: ‘A genetic-simulated annealing algorithm based on PTS technique for PAPR reduction in OFDM system’. Proc. of IEEE Symp. in Computer Applications and Communications (SCAC), Weihai, China, July 2014, pp. 120124.
    47. 47)
      • 16. Han, S.H., Lee, J.H.: ‘Modified selected mapping technique for PAPR reduction of coded OFDM signal’, IEEE Trans. Broadcast., 2004, 50, (3), pp. 335341.
    48. 48)
      • 28. Hung, H.L., Huang, Y.F., Yeh, C.M., et al: ‘Performance of particle swarm optimization techniques on PAPR reduction for OFDM systems’. Proc. of IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC), Singapore, October 2008, pp. 23902395.
    49. 49)
      • 57. Rony, S.K., Mou, F.A., Rahman, M.M.: ‘Performance analysis of OFDM signal using BPSK and QPSK modulation techniques’, Am. J. Eng. Res., 2017, 6, (1), pp. 108117.
    50. 50)
      • 27. Paredes, M.C.P., García, M.: ‘The problem of peak-to-average power ratio in OFDM systems’, arXiv preprint arXiv:1503.08271, 2015, pp. 18.
    51. 51)
      • 30. Chen, J.C.: ‘Partial transmit sequences for PAPR reduction of OFDM signals with stochastic optimization techniques’, IEEE Trans. Consum. Electron., 2010, 56, (3), pp. 12291234.
    52. 52)
      • 37. Liang, H.Y., Chu, H.C., Lin, C.B., et al: ‘A partial transmit sequence technique with error correction capability and low computation’, Int. J. Commun. Syst., 2014, 27, (12), pp. 40144027.
    53. 53)
      • 52. Eberhart, R.C., Simpson, P., Dobbins, R.: ‘Computational intelligence PC tools’ (AP Professional, San Diego, CA, 1996), ch. 6, pp. 212226.
    54. 54)
      • 10. Awater, G.A., Van Nee, R.D., De, A.H.: ‘Transmission system and method employing peak cancellation to reduce the peak-to-average power ratio’. U.S. Patent 6,175, 551, Wild Lucent Technologies Inc., 2001.
    55. 55)
      • 9. Jiang, Y.: ‘New companding transform for PAPR reduction in OFDM’, IEEE Commun. Lett., 2010, 14, (4), pp. 282284.
    56. 56)
      • 35. Prasad, S., Scholar, R., Jayabalan, R.: ‘Scaled offset PSO based PTS for PAPR reduction in OFDM systems’. Proc. of IEEE Int. Conf. on Annual Ubiquitous Computing, Electronics and Mobile Communication (UEMCON), New York, USA, October 2017, pp. 5357.
    57. 57)
      • 3. Rahmatallah, Y., Mohan, S.: ‘Peak-to-average power ratio reduction in OFDM systems: a survey and taxonomy’, IEEE Commun. Surv. Tutorials, 2013, 15, (4), pp. 15671592.
    58. 58)
      • 40. Kim, S.S., Kim, M.J., Gulliver, T.A.: ‘A new PTS for PAPR reduction by local search in GA’. Proc. of IEEE Int. Joint Conf. on Neural Networks (IJCNN), Vancouver, Canada, July 2006, pp. 23702373.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.5340
Loading

Related content

content/journals/10.1049/joe.2018.5340
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading