access icon openaccess Design considerations, modelling, and control of dual-active full bridge for electric vehicles charging applications

The dual active full bridge (DAFB) is one of the promising isolated DC/DC converter topologies that will play a significant role in the future of electric vehicle (EV) integration in smart grids (SGs). This is due to its inherent soft switching and control simplicity. Therefore, this study presents first the latest developments related to the design of DAFB converter in EV charging technology. It provides a brief discussion of the crucial recommendations regarding the reliability, efficiency, system configuration, EV charger control scheme, battery lifetime, and system materials. Then, it presents a step-by-step modelling approach for a non-ideal DAFB for the purpose of designing its controller. In addition, the model provided by this study includes all non-idealities due to the high-frequency (HF) transformer, semiconductor switches, passive components, and digital system delays. Eventually, the proposed system design and analysis was validated by implementing a 6.1 kW prototype on Simulink and Typhoon-HIL real-time simulator.

Inspec keywords: zero voltage switching; power system reliability; electric vehicle charging; zero current switching; DC-DC power convertors; smart power grids; power semiconductor switches; digital systems; battery management systems; hardware-in-the loop simulation; control system synthesis; delays; bridge circuits; high-frequency transformers; power system control

Other keywords: digital system delays; electric vehicles charging applications; system design; EV charger control scheme; soft switching; smart grids; Typhoon-HIL real-time simulator; system materials; step-by-step modelling approach; battery lifetime; power 6.1 kW; semiconductor switches; passive components; DAFB converter; Simulink; high-frequency transformer; dual-active full bridge; isolated DC-DC converter topologies

Subjects: Power electronics, supply and supervisory circuits; Reliability; Control system analysis and synthesis methods; Distributed parameter control systems; Transportation; Control of electric power systems; Inductors and transformers; DC-DC power convertors

References

    1. 1)
      • 44. Zhao, C., Round, S.D., Kolar, J.W.: ‘Full-order averaging modellingof zero-voltage-switching phase-shift bidirectional dc-dc converters’, IET Power Electron., 2010, 3, (3), pp. 400410.
    2. 2)
      • 41. Hull, B., Allen, S., Zhang, Q., et al: ‘Reliability and stability of Sic power mosfets and next-generation Sic MOSFETs’. Proc. of the 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications, Knoxville, TN, USA, 2014, pp. 139142.
    3. 3)
      • 33. Zhao, B., Yu, Q., Sun, W.: ‘Extended-phase-shift control of isolated bidirectional dc–dc converter for power distribution in microgrid’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 46674680.
    4. 4)
      • 53. Kheraluwala, M.N., Gascoigne, R.W., Divan, D.M., et al: ‘Performance characterization of a high-power dual active bridge’, IEEE Trans. Ind. Appl., 1992, 28, pp. 12941301.
    5. 5)
      • 21. Yang, S., Bryant, A., Mawby, P., et al: ‘An industry-based survey of reliability in power electronic converters’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 14411451.
    6. 6)
      • 12. Sortomme, E., El-Sharkawi, M.A.: ‘Optimal combined bidding of vehicle-to-grid ancillary services’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 7079.
    7. 7)
      • 3. Wirasingha, S.G., Pihef, A.E.: ‘Plug-in hybrid electric factor’, IEEE Trans. Veh. Technol., 2011, 60, (3), pp. 12791284.
    8. 8)
      • 4. Wang, Q., Liang, D.: ‘Research on loss reduction of dual active bridge converter over wide load range for solid state transformer application’. Proc. of the 11th Int. Conf. on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 2016, pp. 19.
    9. 9)
      • 10. Gago, R.G., Pinto, S.F., Silva, J.F.: ‘G2v and v2G electric vehicle charger for smart grids’. Proc. of the 2016 IEEE Int. Smart Cities Conf. (ISC2), Trento, Italy, 2016, pp. 16.
    10. 10)
      • 55. Ben-Brahim, L., Gastli, A., Ghazi, K.A.: ‘Implementation of iterative learning control based deadtime compensation for PWM inverters’, Proc. of the 17th Conf. on Power Electronics and Applications, EPE'15-ECCE Europe, Geneva, Switzerland, September 2015, pp. 810.
    11. 11)
      • 30. Islam, M., Mekhilef, S.: ‘A new high efficient transformerless inverter for single phase grid-tied photovoltaic system with reactive power control’. Proc. of the IEEE Applied Power Electronics Conf. and Exposition (APEC), Charlotte, NC, USA, 2015, pp. 16661671.
    12. 12)
      • 28. Tan, N.M.L., Abe, T., Akagi, H., ‘Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 12371248.
    13. 13)
      • 37. Guidi, G., Pavlovsky, M., Kawamura, A., et al: ‘Efficiency optimization of high power density dual active bridge DC-DC converter’. Proc. of the 2010 Int. Power Electronics Conf. - ECCE ASIA -, Sapporo, Japan, 2010, pp. 981986.
    14. 14)
      • 47. Bai, H., Nie, Z., Mi, C.C.: ‘Experimental comparison of traditional phase-shift, dual-phase-shift, and model-based control of isolated bidirectional dc-dc converters’, IEEE Trans. Power Electron., 2010, 25, (6), pp. 14441449.
    15. 15)
      • 56. Ben-Brahim, L.: ‘On the compensation of dead time and zero-current crossing for a PWM-inverter-controlled AC servo drive’, IEEE Trans. Ind. Electron., 2004, 51, (5), pp. 11131118.
    16. 16)
      • 42. Burkart, R.M., Kolar, J.W.: ‘Comparative eta– rho– Sigma pareto optimization of Si and Sic multilevel dual-active-bridge topologies with wide input voltage range’, IEEE Trans. Power Electron., 2017, 32, (7), pp. 52585270.
    17. 17)
      • 39. Todorčević, T., Van Kessel, R., Bauer, P., et al: ‘A modulation strategy for wide voltage output in DAB-based DC–DC modular multilevel converter for DEAP wave energy conversion’, IEEE J. Emerging Sel. Topics Power Electron., 2015, 3, (4), pp. 11711181.
    18. 18)
      • 13. Williamson, S.S., Rathore, A.K., Musavi, F.: ‘Industrial electronics for electric transportation: current state-of-the-art and future challenges’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 30213032.
    19. 19)
      • 8. Bhatti, A.R., Salam, Z., Bin Abdul Aziz, M.J., et al: ‘Electric vehicles charging using photovoltaic: status and technological review’, Renew. Sust. Energy Rev., 2016, 54, pp. 3447.
    20. 20)
      • 45. Qin, H., Kimball, J.W.: ‘Generalized average modeling of dual active bridge DC-DC converter’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 20782084.
    21. 21)
      • 35. Krismer, F., Kolar, J.W.: ‘Accurate small-signal model for the digital control of an automotive bidirectional dual active bridge’, IEEE Trans. Power Electron., 2009, 24, (12), pp. 27562768.
    22. 22)
      • 57. Ben-Brahim, L.: ‘New optimal methods for PWM inverter dead-time compensation’. Proc. of the EPE2001, Graz, Austria, August 2001, pp. 16.
    23. 23)
      • 50. Akagi, H., Kitada, R.: ‘Control of a modular multilevel cascade BTB system using bidirectional isolated DC/DC converters’, Proc. of the 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 2010, pp. 35493555.
    24. 24)
      • 2. Larminie, J., Lowry, J.: ‘Electric vehicle technology explained’ (Wiley, New York, NY, USA, 2003).
    25. 25)
      • 46. Bai, H., Chunting, M., Chongwu, W., et al: ‘The dynamic model and hybrid phase-shift control of a dual-active-bridge converter’. Proc. IEEE Ind. Electron. Conf., Orlando, FL, USA, 2008, pp. 28402845.
    26. 26)
      • 5. Thomas, P., Sreekanth, P.K., Ganesh, M., et al: ‘Design, simulation and comparison of single phase bidirectional converters for v2G and g2V applications’. Proc. of the 2015 Annual IEEE India Conf. (INDICON), New Delhi, India, 2015, pp. 16.
    27. 27)
      • 15. Zhao, B., Song, Q., Liu, W., et al: ‘A synthetic discrete design methodology of high-frequency isolated bidirectional DC/DC converter for grid-connected battery energy storage system using advanced components’, IEEE Trans. Ind. Electron., 2014, 6, (10), pp. 54025410.
    28. 28)
      • 20. Wang, H., Zhou, D., Blaabjerg, F.: ‘A reliability -oriented design method for power electronic converters’. Proc. of the IEEE Appl. Power Electron. Conf. and Expo., Long Beach, CA, USA, 2013, pp. 22912298.
    29. 29)
      • 58. Ben-Brahim, L.: ‘The analysis and compensation of dead-time effects in three phase PWM inverters’. Proc. of the 24th Annual Conference of the IEEE Industrial Electronics Society (IECON' 98), Aachen, Germany, August/September 1998, vol. 2, pp. 792797.
    30. 30)
      • 27. Xue, L., Shen, Z., Boroyevich, D., et al: ‘Dual active bridge-based battery charger for plug-in hybrid electric vehicle with charging current containing low frequency ripple’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 72997307.
    31. 31)
      • 54. Khan, A., Jarraya, F., Gastli, A., et al: ‘Dual active full bridge implementation on typhoon HIL for g2V and v2G applications’. Proc. of the 2017 IEEE Vehicle Power and Propulsion Conf. (VPPC), Belfort, France, 2017, pp. 16.
    32. 32)
      • 9. Galus, M.D., Anderson, G.: ‘Demand management of grid connected plug-in hybrid electric vehicles (PHEV)’. Proc. of the IEEE Energy 2030 Conf., ENERGY, Atlanta, GA, USA, 2008, pp. 18.
    33. 33)
      • 17. Morstyn, T., Momayyezan, M., Hredzak, B., et alDistributed control for state-of-charge balancing between the modules of a reconfigurable battery energy storage system’, IEEE Trans. Power Electron., 2016, 31, (11), pp. 79867995.
    34. 34)
      • 22. Wang, H., Chung, H.S.H., Liu, W.: ‘Use of a series voltage compensator for reduction of the DC-link capacitance in a capacitor-supported system’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 11631175.
    35. 35)
      • 25. Sun, Y., Liu, Y., Su, M., et al: ‘Review of active power decoupling topologies in single-phase systems’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 47784794.
    36. 36)
      • 36. Wang, H., Yan, K., Ling, Z., et al: ‘Switching strategy for isolated dual-active-bridge converter’, IET Power Electron., 2017, 10, (1), pp. 2937.
    37. 37)
      • 18. Wang, H., Blaabjerg, F.: ‘Reliability of capacitors for DC-link applications in power electronic converters – an overview’, IEEE Trans. Ind. Appl., 2014, 50, (5), pp. 35693578.
    38. 38)
      • 23. Khan, A., Houchati, M., Ur-Rehman, J., et al: ‘Switchless power decoupling and switchless leakage current elimination in grid-tied inverters’, Proc. of the 9th IEEE-GCC Conf. and Exhibition (GCCCE), Manama, Bahrain, 2017, pp. 16.
    39. 39)
      • 24. Qin, Z., Tang, Y., Loh, P.C., et al: ‘Benchmark of AC and DC active power decoupling circuits for second-order harmonic mitigation in kilowatt-scale single-phase inverters’, IEEE J. Emerging Sel. Topics Power Electron., 2016, 4, (1), pp. 1525.
    40. 40)
      • 31. Riedel, J., Holmes, D.G., McGrath, B.P., et al: ‘ZVS soft switching boundaries for dual active bridge DC–DC converters using frequency domain analysis’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 31663179.
    41. 41)
      • 52. Segaran, D., Holmes, D.G., McGrath, B.P.: ‘Enhanced load step response for a bidirectional DC–DC converter’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 371379.
    42. 42)
      • 49. Figueres, E., Garcera, G., Sandia, J., et al: ‘Sensitivity study of the dynamics of three-phase photovoltaic inverters with an LCL grid filter’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 706717.
    43. 43)
      • 7. Kondo, R., Higaki, Y., Yamada, M.: ‘Proposition and experimental verification of a bi-directional isolated DC/DC converter for battery charger-discharger of electric vehicle’. Proc. of the 2016 IEEE Applied Power Electronics Conf. and Exposition (APEC), Long Beach, CA, USA, 2016, pp. 17131720.
    44. 44)
      • 1. Ehsani, M., Gao, Y., Gay, S.E., et al: ‘Modern electric, hybrid electric, and fuel cell vehicles’ (CRC Press, Boca Raton, FL, USA, 2005).
    45. 45)
      • 32. Zhao, B., Song, Q., Liu, W., et al: ‘Overview of dual-active-bridge isolated bidirectional DC–DC converter for high-frequency-link power-conversion system’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 40914106.
    46. 46)
      • 26. Serban, I.: ‘Power decoupling method for single-phase H-bridge inverters with no additional power electronics’, IEEE Trans. Ind. Electron, 2015, 62, (8), pp. 48054813.
    47. 47)
      • 51. Akagi, H., Kitada, R.: ‘Control and design of a modular multilevel cascade BTB system using bidirectional isolated DC/DC converters,IEEE Trans. Power Electron., 2011, 26, (9), pp. 24572464.
    48. 48)
      • 48. Zhang, K., Shan, Z., Jatskevich, J.: ‘Large- and small-signal average-value modeling of dual-active-bridge DC–DC converter considering power losses’, IEEE Trans. Power Electron., 2017, 2, (3), pp. 19641974.
    49. 49)
      • 40. Martin, D., Killeen, P., Curbow, W.A., et al: ‘Comparing the switching performance of Sic MOSFET intrinsic body diode to additional Sic Schottky diodes in Sic power modules’. Proc. of the 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Fayetteville, AR, USA, 2016, pp. 242246.
    50. 50)
      • 11. Kesler, M., Kisacikoglu, M., Tolbert, L.: ‘Vehicle to grid reactive power operation using plug-in electric vehicle bidirectional offboard charger’, IEEE Trans. Ind. Electron., 2014, 61, (12), pp. 67786784.
    51. 51)
      • 6. Habib, S., Kamran, M., Rashid, U.: ‘Impact analysis of vehicle-to-grid technology and charging strategies of electric vehicles on distribution networks – A review’, J. Power Sources, 2015, 277, pp. 205214.
    52. 52)
      • 34. Bai, H., Mi, C.: ‘Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC–DC converters using novel dual-phase-shift control’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 29052914.
    53. 53)
      • 16. Xuan, Z., Shenghua, H., Guoyun, N.: ‘A three-phase dual active bridge bidirectional ZVS DC/DC converter’, Phys. Procedia., 2012, 24, pp. pp. 139148.
    54. 54)
      • 14. Khan, A., Ben-Brahim, L., Gastli, A., et al: ‘Review and simulation of leakage current in transformerless microinverters for PV applications’, Renew. Sust. Energy Rev., 2017, 74, pp. 12401256.
    55. 55)
      • 38. Everts, J., Krismer, F., Van den Keybus, J., et al: ‘Charge-based ZVS soft switching analysis of a single-stage dual active bridge AC-DC converter’. Proc. of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 2013, pp. 48204829.
    56. 56)
      • 29. Wu, T.F., Kuo, C.L., Sun, K.H., et al: ‘Combined unipolar and bipolar PWM for current distortion improvement during power compensation’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 17021709.
    57. 57)
      • 19. Wang, H., Liserre, M., Blaabjerg, F.: ‘Toward reliable power electronics: challenges, design tools, and opportunities’, IEEE Ind. Electron. Mag., 2013, 7, (2), pp. 1726.
    58. 58)
      • 43. Wang, Y., de Haan, S.W.H., Ferreira, J.A.: ‘Design of low-profile nanocrystalline transformer in high-current phase-shifted DC-DC converter’. Proc. of the 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 2010, pp. 21772181.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.5279
Loading

Related content

content/journals/10.1049/joe.2018.5279
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading