Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess 30 Gb/s integrated receiver array for parallel optical interconnects

A 30 Gb/s integrated receiver array for parallel optical interconnects with four channels have been designed and implemented in a 0.13 μm CMOS technology. To achieve small area and low power consumption while maintaining large bandwidth and high gain, the integrated receiver has been implemented with a regulated cascode (RGC) transimpedance amplifier (TIA), resistive and capacitive degeneration and inductorless limiting amplifier (LA), which employs active feedback and negative capacitance. From the measurement results of the optical module using 850 nm photodiode (PD), the receiver showed a constant single-ended output swing of 320 mV up to 7.5 Gb/s/ch with clear eye diagrams and BER of <10−12. With a voltage supply of 1.2 V, a figure of merit (FOM) of 8 mW/Gb/s was obtained with a small chip area per channel of 0.28 mm2/ch.

References

    1. 1)
      • 6. Khaki, A.M.Z., Omoomi, M., Borzabadi, E.: ‘An ultra-low-power TIA plus limiting amplifier in 90 nm CMOS technology for 2.5 Gb/s optical receiver’. 24th Iranian Conf. on Electrical Engineering, Shiraz, Iran, 2016, pp. 10551059.
    2. 2)
      • 11. Alexander, S.B.: ‘Optical communication receiver design’ (SPIE, Bellingham, 1997).
    3. 3)
      • 12. Momeni, O., Hashemi, H., Afshari, E.: ‘A 10-Gb/s inductorless transimpedance amplifier’, IEEE Trans. Circuits Syst. II, 2010, 57, (12), pp. 926930.
    4. 4)
      • 3. Krishnamurthy, K., Vetury, R., Yet-zen, L., et al: ‘40 Gbit/s optical receiver module with high conversion gain and sensitivity’, Electron. Lett., 2003, 39, (24), pp. 17381739.
    5. 5)
      • 2. Knochenhauer, C., Sedighi, B., Ellinger, F.: ‘40 Gbit/s transimpedance amplifier with high linearity range in 0.13 μm SiGe BiCMOS’, Electron. Lett., 2011, 47, (10), pp. 605606.
    6. 6)
      • 4. Chou, S.-T., Huang, S.-H., Hong, Z.-H., et al: ‘A 40 Gbps optical receiver analog front-end in 65 nm CMOS’. IEEE Int. Symp. on Circuits and Systems (ISCAS), Seoul, South Korea, 2012, pp. 17361739.
    7. 7)
      • 8. Jin, J.-D., Shawn, S., Hsu, H.: ‘A 40-Gb/s transimpedance amplifier in 0.18-μm CMOS technology’, IEEE J. Solid-State Circuits, 2008, 43, (6), pp. 520523.
    8. 8)
      • 5. Zohoori, S., Dolatshahi, M.: ‘A CMOS Low-power optical front-end for 5 Gbps applications’, J. Fiber Integr. Opt., 2018, 37, (1), pp. 3756.
    9. 9)
      • 10. Park, S.M., Yoo, H.-J.: ‘1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit ethernet applications’, IEEE J. Solid-State Circuits, 2004, 39, (1), pp. 112121.
    10. 10)
      • 7. Lu, Z., Yeo, K.S., Ma, J., et al: ‘Broadband design techniques for transimpedance amplifiers’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2007, 54, (3), pp. 590600.
    11. 11)
      • 1. Taubenblatt, M.A.: ‘Optical interconnects for high-performance computing’, J. Lightwave Technol., 2012, 30, (4), pp. 448457.
    12. 12)
      • 9. Han, J., Yoo, K., Lee, D., et al: ‘A low-power gigabit CMOS limiting amplifier using negative impedance compensation and its application’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2012, 20, (3), pp. 393399.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.5260
Loading

Related content

content/journals/10.1049/joe.2018.5260
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address