http://iet.metastore.ingenta.com
1887

access icon openaccess Novel computer-aided diagnosis of lung cancer using bag of visual words to achieve high accuracy rates

  • XML
    72.5927734375Kb
  • HTML
    75.98046875Kb
  • PDF
    1.7253608703613281MB
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/12/JOE.2018.5215.html;jsessionid=433t7iaoa2gsj.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.5215&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Khosravi, A., Salaken, S.M., Khatami, A., et al: ‘Lung cancer classification using deep learned features on low population dataset’. Electrical and Computer Engineering (CCECE), Windsor, Canada, April 2017, pp. 15.
    2. 2)
      • 2. Serapioni, R.P., Messelodi, S., Lecca, M.: ‘A new region-based active contour model for object segmentation’, J. Math. Imaging Vis., 2015, 53, pp. 233249.
    3. 3)
      • 3. Adi, K., Widodo, C.E., Widodo, A.P., et al: ‘Naïve Bayes algorithm for lung cancer diagnosis using image processing techniques’, Adv. Sci. Lett., 2017, 40, pp. 22962298.
    4. 4)
      • 4. Kiaei, A.A., Khotanlou, H.: ‘Segmentation of medical images using mean value guided contour’, Med. Image Anal., 2017, 40, pp. 111132.
    5. 5)
      • 5. Makde, V., Bhavsar, J., Jain, S., et al: ‘Deep neural network based classification of tumourous and non-tumourous medical images’, Information and Communication Technology for Intelligent Systems, (Springer International Publishing, New York, 2017).
    6. 6)
      • 6. Malik, B., Singh, P.J., Singh, P.B.V., et al: ‘Lung cancer detection at initial stage by using image processing and classification techniques’, Int. Res. J. Eng. Technol., 2016, 3, pp. 18.
    7. 7)
      • 7. Kulkarni, G.S., Bagal, B.S.: ‘Lung cancer tumor detection using image processing and soft computing techniques’, Int. J. Sci. Technol. Manag., 2016, 5, (5).
    8. 8)
      • 8. Kuruvilla, J., Gunavathi, K.: ‘Lung cancer classification using neural networks for CT images’, Comput. Methods Programs Biomed., 2014, 113, pp. 202209.
    9. 9)
      • 9. Dharmarajan, A., Velmurugan, T.: ‘Lung cancer data analysis by k-means and farthest first clustering algorithms’, Indian J. Sci. Technol., 2015, 8, pp. 18.
    10. 10)
      • 10. Kumar, D., Wong, A., Clausi, D.A.: ‘Lung nodule classification using deep features in CT images’. Computer and Robot Vision (CRV), Halifax, Canada, June 2015, pp. 133138.
    11. 11)
      • 11. Ramani, G.R., Keerthana, R., Lakshmi, B.: ‘Detection of pulmonary nodules in thoracic CT images using image processing and data mining techniques’, Int. J. Comput. Appl., 2017, 165, pp. 5862.
    12. 12)
      • 12. Tsukamoto, T., Teramoto, A., Kiriyama, Y., et al: ‘Automated classification of lung cancer types from cytological images using deep convolutional neural networks’, BioMed Res. Int., 2017, 16, pp. 16.
    13. 13)
      • 13. Froz, B.R., Silva, A.C., de Carvalho Filho, A.O., et al: ‘Lung nodule classification using artificial crawlers, directional texture and support vector machine’, Expert Syst. Appl., 2017, 69, pp. 176188.
    14. 14)
      • 14. Jatain, A., Joon, P., Bhaskar, S.B.: ‘Lung cancer detection using image processing techniques’, Int. J. Eng. Sci., 2017, 6497, pp. 16.
    15. 15)
      • 15. Sharma, K., Priyanka Kalsh, A., et al: ‘GLCM and its features’, Int. J. Adv. Res. Electron. Commun. Eng., 2015, 4, pp. 21802182.
    16. 16)
      • 16. Paul, R., Hawkins, H.S., Hall, O.L., et al: ‘Combining deep neural network and traditional image features to improve survival predication accuracy for lung cancer patients from diagnostic CT’. IEEE Int. Conf. on Systems, Man and Cybernetics (SMC), Budapest, Hungary, October 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.5215
Loading

Related content

content/journals/10.1049/joe.2018.5215
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address