Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Banshee distribution network benchmark and prototyping platform for hardware-in-the-loop integration of microgrid and device controllers

This article provides a unique benchmark to integrate and systematically evaluate advanced functionalities of microgrid and downstream device controllers. The article describes Banshee, a real-life power distribution network. It also details a real-time controller hardware-in-the-loop (HIL) prototyping platform to test the responses of the controllers and verify decision-making algorithms. The benchmark aims to address power industry needs for a common basis to integrate and evaluate controllers for the overall microgrid, distributed energy resources (DERs), and protective devices. The test platform will accelerate microgrid deployment, enable standard compliance verification, and further develop and test controllers' functionalities. These contributions will facilitate safe and economical demonstrations of the state-of-the-possible while verifying minimal impact to existing electrical infrastructure. All aspects of the benchmark and platform development including models, configuration files, and documentation are publicly available via the electric power HIL controls collaborative (EPHCC).

References

    1. 1)
      • 5. CIGRE Task Force TF C6.04.02: ‘TB 575-benchmark systems for network integration of renewable and distributed energy resources’, April 2014.
    2. 2)
      • 9. IEEE P2030.8: ‘IEEE standard for testing of microgrid controllers’, 2018.
    3. 3)
      • 26. Lauss, G., Strunz, K.: ‘Multi-rate partitioning (MRP) interface for enhanced stability of power-hardware-in-the-loop real-time simulation’, IEEE Trans. Ind. Electron., 2019, 66, (1), pp. 595605.
    4. 4)
      • 14. Wang, J., Song, Y., Li, W., et al: ‘Development of a universal platform for hardware in-the-loop testing of microgrids’, IEEE Trans. Ind. Inf., 2014, 10, (4), pp. 21542165.
    5. 5)
      • 19. Ivanović, Z.R., Adžić, E.M., Vekić, M.S., et al: ‘HIL evaluation of power flow control strategies for energy storage connected to smart grid under unbalanced conditions’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 46994710.
    6. 6)
      • 33. Dufour, C., Bélanger, J.: ‘Real-time simulation on technologies in engineering’, in Martinez-Velasco, J.A. (Ed.): ‘Transient analysis of power systems: systems techniques, tools and applications, 1’ (John Wiley & Sons, Chichester, 2015), pp. 7297.
    7. 7)
      • 20. Schweitzer Engineering Laboratories. Available at http://selinc.com/, accessed May 2018.
    8. 8)
      • 3. Degner, T., Dimeas, A., Engler, A., et al: ‘Microgrids: architectures and control’ (Wiley-IEEE Press, Chichester, 2014).
    9. 9)
      • 16. Lauss, G., Lehfuss, F., Bletterie, B., et al: ‘Examination of LV grid phenomena by means of PHIL testing’. IECON 2012 – IEEE 38th Annual Conf. on IEEE Industrial Electronics Society, Montreal, October 2012.
    10. 10)
      • 25. Electric Power Hardware-in-the-loop Controls Collaborative. Available at https://github.com/PowerSystemsHIL/EPHCC/releases/download/ BansheeBenchmark/Supporting.Data.for.Banshee.Benchmark.Paper.zip, accessed July 2018.
    11. 11)
      • 4. Strunz, K., Abbasi, E., Huu, D.N.: ‘DC microgrid for wind and solar power integration’, IEEE J. Emerging Sel. Topics Power Electron., 2014, 2, (1), pp. 115126.
    12. 12)
      • 27. Steurer, M., Bogdan, F., Ren, W., et al: ‘Controller and power hardware-in-loop methods for accelerating renewable energy integration’. Proc. of Power Engineering Society General Meeting 2007, Tampa, USA, 24–28 June 2007.
    13. 13)
      • 29. Clemson University, SCE&G Energy Innovation Center. Available at http://clemsonenergy.com/duke-energy-egrid/, accessed May 2018.
    14. 14)
      • 8. IEEE 2030.7: ‘IEEE standard for specification of microgrid controllers’, 2017.
    15. 15)
      • 6. Papathanassiou, S., Hatziargyriou, N., Strunz, K.: ‘A benchmark low voltage microgrid network’. CIGRE Symp. on Power Systems with Dispersed Generation, Athens, Greece, April 2005.
    16. 16)
      • 11. Guillaud, X., Faruque, O., Teninge, A., et al: ‘Applications of real-time simulation technologies in power and energy systems’, IEEE Power Energy Technol. Syst. J., 2015, 2, (3), pp. 103115.
    17. 17)
      • 36. IEEE Std. 141-1993: ‘IEEE recommended practice for electric power distribution for industrial plants’, 1993.
    18. 18)
      • 18. Johnson, J., Ablinger, R., Bründlinger, R., et al: ‘Design and evaluation of SunSpec-compliant smart grid controller with an automated hardware-in-the-loop testbed’, Technol. Economics Smart Grids Sustain. Energy, 2017, 2, (1), p. 16.
    19. 19)
      • 35. NFPA 70: National Electrical Code (NEC) Handbook, 2017.
    20. 20)
      • 40. Dufour, C., Abourida, S., Bélanger, J.: ‘Real-time simulation of electrical vehicle motor drives on a PC cluster’. Proc. of the 10th European Conf. on Power Electronics and Applications, Toulouse, France, September 2003.
    21. 21)
      • 23. National Renewable Energy Laboratory, Competitive Procurement for Microgrid Controller Technology. Available at https://www.nrel.gov/esif/webinar-competitive-procurement.html, accessed May 2018.
    22. 22)
      • 28. NREL, Energy Systems Integration Facility. Available at https://www.nrel.gov/esif/, accessed May 2018.
    23. 23)
      • 21. EATON. Available at http://www.eaton.com, accessed May 2018.
    24. 24)
      • 17. Palmintier, B., Lundstrom, B., Chakraborty, S., et al: ‘A power hardware-in-the-loop platform with remote distribution circuit cosimulation’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 22362245.
    25. 25)
      • 15. Karapanos, V., de Haan, S., Zwetsloot, K.: ‘Real time simulation of a power system with VSG hardware in the loop’. IECON 2011 – 37th Annual Conf. on IEEE Industrial Electronics Society, Melbourne, Australia, November 2011.
    26. 26)
      • 7. Lasseter, R.H.: ‘Certs microgrid’. 2007 IEEE Int. Conf. on System of Systems Engineering, San Antonio, TX, April 2007, pp. 15.
    27. 27)
      • 10. IEEE P1547: ‘IEEE draft standard for interconnection and interoperability of distributed energy resources with associated electric power system interfaces’, 2018.
    28. 28)
      • 32. Maniatopoulos, M., Lagos, D., Kotsampopoulos, P., et al: ‘Combined control and power hardware-in-the-loop simulation for testing smart grid control algorithms’, IET Gener. Transm. Distrib., 2017, 11, (12), pp. 30093018.
    29. 29)
      • 12. Faruque, O., Strasser, T., Lauss, G., et al: ‘Real-time simulation technologies for power systems design, testing, and analysis’, IEEE Power Energy Technol. Syst. J., 2015, 2, (2), pp. 6373.
    30. 30)
      • 30. Florida State University, Center for Advanced Power Systems. Available at https://www.caps.fsu.edu/, accessed May 2018.
    31. 31)
      • 34. Watson, N., Arrillaga, J.: ‘Power systems electromagnetic transients simulation’ (IET Press, London, 2007).
    32. 32)
      • 13. Kotsampopoulos, P., Lehfuss, F., Lauss, G., et al: ‘The limitations of digital simulation and the advantages of PHIL testing in studying distributed generation provision of ancillary services’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 55025515.
    33. 33)
      • 39. Dufour, C., Bélanger, J.: ‘A real-time simulator for doubly fed induction generator based wind turbine applications’. Proc. of IEEE 35th Power Electronics Specialists Conf., Aachen, Germany, June 2004.
    34. 34)
      • 24. Ilic, M.: ‘Market integration between wholesale and retail markets’. IEEE Power and Energy Society General Meeting, Chicago, IL, July 2017.
    35. 35)
      • 22. Manson, S., Nayak, B., Allen, W.: ‘Robust microgrid control system for seamless transition between grid-tied and island operating modes’. 44th Annual Western Protective Relay Conf., Spokane, WA, October 2017.
    36. 36)
      • 31. Austrian Institute of Technology, SmartEST Laboratory. Available at https://www.ait.ac.at/en/research-fields/smart-grids/laboratories, accessed May 2018.
    37. 37)
      • 2. Bredenberg, A.: ‘Could decentralized microgrids solve the extreme weather outage problem?’ (Thomas Publishing Co., New York, 2012). Available at http://news.thomasnet.com/imt/2012/11/12/could-decentralized-microgrids-solve-the-extreme-weather-outage-problem, accessed May 2018.
    38. 38)
      • 38. Jenbacher Type 6 Technical Brochure. Available at https://www.gepower.com/gas/reciprocating-engines/jenbacher/type-6, accessed May 2018.
    39. 39)
      • 1. Wood, E.: ‘Hurricane harvey creates new abnormal for the electric grid’, Microgrid Knowledge, August 2017. Available at https://microgridknowledge.com/microgrids-and-hurricane-harvey/, accessed May 2018.
    40. 40)
      • 37. Gangopadhyay, A., Meckl, P.: ‘Modeling and validation of a lean burn natural gas engine’, J. Dyn. Syst. Meas. Contr., 1998, 123, (3), pp. 425430.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.5174
Loading

Related content

content/journals/10.1049/joe.2018.5174
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address