http://iet.metastore.ingenta.com
1887

access icon openaccess Improvement of illumination-insensitive features for face recognition under complex illumination conditions

  • XML
    87.923828125Kb
  • PDF
    5.121953964233398MB
  • HTML
    112.482421875Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/12/JOE.2018.5055.html;jsessionid=3wq78okafyc1.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.5055&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Phillips, P.J., Scruggs, W.T., O'Toole, A.J., et al: ‘FRVT 2006 and ICE 2006 large-scale experimental results’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (5), pp. 831846.
    2. 2)
      • 2. Vageeswaran, P, Mitra, K., Chellappa, R.: ‘Blur and illumination robust face recognition via set-theoretic characterization’, IEEE Trans. Image Process., 2013, 22, (4), pp. 13621372.
    3. 3)
      • 3. Savvides, M., Kumar, B.V.K.: ‘Illumination normalization using logarithm transforms for face authentication’. IEEE Int. Conf. on Audio-and Video-Based Biometric Person Authentication, Berlin, Germany, 2003, pp. 549556.
    4. 4)
      • 4. Shan, S., Gao, W., Cao, B., et al: ‘Illumination normalization for robust face recognition against varying lighting conditions’. IEEE Int. Workshop on Analysis and Modeling of Faces and Gestures, Nice, France, 2003, pp. 157164.
    5. 5)
      • 5. Xie, X., Lam, K.M.: ‘Face recognition under varying illumination based on a 2D face shape model’, Pattern Recognit., 2005, 38, (2), pp. 221230.
    6. 6)
      • 6. Stark, J.A.: ‘Adaptive image contrast enhancement using generalizations of histogram equalization’, IEEE Trans. Image Process., 2000, 9, (5), pp. 889896.
    7. 7)
      • 7. Lee, P.H., Wu, S.W., Hung, Y.P.: ‘Illumination compensation using oriented local histogram equalization and its application to face recognition’, IEEE Trans. Image Process., 2012, 21, (9), pp. 42804289.
    8. 8)
      • 8. Xie, X., Zheng, W.S., Lai, J., et al: ‘Normalization of face illumination based on large-and small-scale features’, IEEE Trans. Image Process., 2011, 20, (7), pp. 18071821.
    9. 9)
      • 9. Tan, X., Triggs, B.: ‘Enhanced local texture feature sets for face recognition under difficult lighting conditions’, IEEE Trans. Image Process., 2010, 19, (6), pp. 16351650.
    10. 10)
      • 10. Jobson, D.J., Rahman, Z., Woodell, G.A.: ‘A multiscale retinex for bridging the gap between color images and the human observation of scenes’, IEEE Trans. Image Process., 1997, 6, (7), pp. 965976.
    11. 11)
      • 11. Chen, W., Er, M.J., Wu, S.: ‘Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2006, 36, (2), pp. 458466.
    12. 12)
      • 12. Wang, H., Li, S.Z., Wang, Y.: ‘Face recognition under varying lighting conditions using self quotient image’. IEEE Int. Conf. on Automatic Face and Gesture Recognition, South Korea, June 2004, pp. 819824.
    13. 13)
      • 13. Chen, T., Yin, W., Zhou, X.S., et al: ‘Total variation models for variable lighting face recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (9), pp. 15191524.
    14. 14)
      • 14. Li, Q., Yin, W., Deng, Z.: ‘Image-based face illumination transferring using logarithmic total variation models’, Vis. Comput., 2010, 26, (1), pp. 4149.
    15. 15)
      • 15. Xie, S., Shan, S., Chen, X., et al: ‘Fusing local patterns of Gabor magnitude and phase for face recognition’, IEEE Trans. Image Process., 2010, 19, (5), pp. 13491361.
    16. 16)
      • 16. Hu, H.: ‘Illumination invariant face recognition based on dual-tree complex wavelet transform’, IET Comput. Vis., 2014, 9, (2), pp. 163173.
    17. 17)
      • 17. Baradarani, A., Wu, Q.M.J., Ahmadi, M.: ‘An efficient illumination invariant face recognition framework via illumination enhancement and DD-DTCWT filtering’, Pattern Recognit., 2013, 46, (1), pp. 5772.
    18. 18)
      • 18. Cheng, Y., Hou, Y., Zhao, C., et al: ‘Robust face recognition based on illumination invariant in nonsubsampled contourlet transform domain’, Neurocomputing, 2010, 73, (10), pp. 22172224.
    19. 19)
      • 19. Zhou, Y., Zhou, S.T., Zhong, Z.Y., et al: ‘A de-illumination scheme for face recognition based on fast decomposition and detail feature fusion’, Opt. Express, 2013, 21, (9), pp. 1129411308.
    20. 20)
      • 20. Nikan, S., Ahmadi, M.: ‘Local gradient-based illumination invariant face recognition using local phase quantisation and multi-resolution local binary pattern fusion’, IET Image Process., 2014, 9, (1), pp. 1221.
    21. 21)
      • 21. Wu, Y., Jiang, Y., Zhou, Y., et al: ‘Generalized Weber-face for illumination-robust face recognition’, Neurocomputing, 2014, 136, pp. 262267.
    22. 22)
      • 22. Cheng, Y., Li, Z., Han, Y.: ‘A novel illumination estimation for face recognition under complex illumination conditions’, IEICE Trans. Inf. Syst., 2017, 100, (4), pp. 923926.
    23. 23)
      • 23. Cheng, Y., Jiao, L., Cao, X., et al: ‘Illumination-insensitive features for face recognition’, Vis. Comput., 2017, 33, (11), pp. 14831493.
    24. 24)
      • 24. Tsiotsios, C., Petrou, M.: ‘On the choice of the parameters for anisotropic diffusion in image processing’, Pattern Recognit., 2013, 46, (5), pp. 13691381.
    25. 25)
      • 25. Xiao, J.S., Shan, D.D., Duan, P.F., et al: ‘A fast image enhancement algorithm based on fusion of different color spaces’, Acta Autom. Sin., 2014, 40, (4), pp. 697705.
    26. 26)
      • 26. Lee, K.C.: ‘The extended yale face database B’. Available at http://vision.ucsd.edu/∼iskwak/ExtYaleDatabase/ExtYaleB.html.
    27. 27)
      • 27. Sim, T., Baker, S., Bsat, M.: ‘The CMU pose, illumination, and expression database’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, pp. 16151618.
    28. 28)
      • 28. Gao, W., Cao, B., Shan, S., et al: ‘CAS-PEAL face database’. Available at http://www.jdl.ac.cn/peal/index.html.
    29. 29)
      • 29. Zhu, Y., Huang, C.: ‘An adaptive histogram equalization algorithm on the image gray level mapping’, Phys. Proc., 2012, 25, pp. 601608.
    30. 30)
      • 30. Ding, J., Wen, C., Li, G., et al: ‘Locality sensitive batch feature extraction for high-dimensional data’, Neurocomputing, 2016, 171, pp. 664672.
    31. 31)
      • 31. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: ‘Eigenfaces vs. fisherfaces: recognition using class specific linear projection’, IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19, (7), pp. 711720.
    32. 32)
      • 32. Liu, C.: ‘Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (5), pp. 725737.
    33. 33)
      • 33. Martínez, A.M., Kak, A.C.: ‘PCA versus LDA’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (2), pp. 228233.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.5055
Loading

Related content

content/journals/10.1049/joe.2018.5055
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address