http://iet.metastore.ingenta.com
1887

access icon openaccess Energy management in smart grids for the integration of hybrid wind–PV–FC–battery renewable energy resources using multi-objective particle swarm optimisation (MOPSO)

  • PDF
    5.2679643630981445MB
  • XML
    154.40625Kb
  • HTML
    166.470703125Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/11/JOE.2018.5036.html;jsessionid=5su5rypp19vm.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.5036&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Faber, I., Lane, W., Pak, W., et al: ‘Micro-energy markets: the role of a consumer preference pricing strategy on microgrid energy investment’, Energy, 2014, 74, pp. 567575.
    2. 2)
      • 2. Reddy, K.S., Kumar, M., Mallick, T.K., et al: ‘A review of integration, control, communication and metering (ICCM) of renewable energy based smart grid’, Renew. Sustain. Energy Rev., 2014, 38, pp. 180192.
    3. 3)
      • 3. Lidula, N.W.A., Rajapakse, A.D.: ‘Microgrids research: a review of experimental microgrids and test systems’, Renew. Sustain. Energy Rev., 2011, 15, pp. 186202.
    4. 4)
      • 4. Firouzi, B.B., Farjah, E., Abarghooee, R.A.: ‘An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties’, Energy, 2013, 50, pp. 232244.
    5. 5)
      • 5. Taha, S.: ‘Recent developments in microgrids and example cases around the world – a review’, Renew. Sustain. Energy Rev., 2011, 15, pp. 40304041.
    6. 6)
      • 6. Khrennikov, A.Y.: ‘New intellectual networks (smart grid) for detecting electrical equipment faults, defects and weaknesses’, Smart Grid Renew. Energy, 2012, 3, pp. 159164.
    7. 7)
      • 7. Mazidi, M., Zakariazadeh, A., Jadid, S., et al: ‘Integrated scheduling of renewable generation and demand response programs in a microgrid’, Energy Convers. Manage., 2014, 86, pp. 11181127.
    8. 8)
      • 8. US Department of Energy, Office of Electricity Delivery and Energy Reliability: ‘Smart grid research and development. multi-year program plan (MYPP)’, 2012.
    9. 9)
      • 9. Phuangpornpitak, N, Tia, S.: ‘Opportunities and challenges of integrating renewable energy in smart grid system’, Energy Procedia, 2013, 34, pp. 282290.
    10. 10)
      • 10. Gupta, A., Saini, R.P., Sharma, M.P.: ‘Steady-state modelling of hybrid energy system for off grid electrification of cluster of villages’, Renew. Energy, 2010, 35, (2), pp. 520535.
    11. 11)
      • 11. Luna, A.C., Diaz, N.L., Graells, M., et al: ‘Mixed-integer-linear-programming based energy management system for hybrid PV-wind-battery microgrids: modelling, design and experimental verification’, IEEE Trans. Power Electron., 2016, PP, (99), pp. 27692783.
    12. 12)
      • 12. Kuznetsova, E., Li, Y.F., Ruiz, C., et al: ‘An integrated framework of agent-based modelling and robust optimization for microgrid energy management’, Appl. Energy, 2014, 129, pp. 7088.
    13. 13)
      • 13. Ahn, S.J., Nam, S.R., Choi, J.H., et al: ‘Power scheduling of distributed generators for economic and stable operation of a microgrid’, IEEE Trans. Smart Grid, 2013, 4, pp. 398405.
    14. 14)
      • 14. Rémy, R.M., Bruno, S., Xavier, R., et al: ‘Optimal power dispatching strategies in smart-microgrids with storage’, Renew. Sustain. Energy Rev., 2014, 40, pp. 649658.
    15. 15)
      • 15. Tina, G.M., Scandura, P.F.: ‘Case study of grid connected with battery photo-voltaic system: V-trough concentration vs. single-axis tracking’, Energy Convers. Manage., 2012, 64, pp. 569578.
    16. 16)
      • 16. Zhang, L., Gari, N., Hmurcik, L.V.: ‘Energy management in a microgrid with distributed energy resources’, Energy Convers. Manage., 2014, 78, pp. 297305.
    17. 17)
      • 17. Zhao, B., Dong, X., Luan, W., et al: ‘Short-term operation scheduling in renewable-powered microgrids: a duality-based approach’, IEEE Trans. Sustain. Energy, 2014, 5, pp. 209217.
    18. 18)
      • 18. Jiang, Q., Xue, M., Geng, G.: ‘Energy management of microgrid in grid-connected and stand-alone modes’, IEEE Trans. Power Syst., 2013, 28, pp. 33803389.
    19. 19)
      • 19. Gabbar, H.A., Abdelsalam, A.A.: ‘Microgrid energy management in grid-connected and islanding modes based on SVC’, Energy Convers. Manage., 2014, 86, pp. 964972.
    20. 20)
      • 20. Yen-Haw, C.: ‘Economic analysis and optimal energy management models for microgrid systems: a case study in Taiwan’, Appl. Energy, 2013, 103, pp. 145154.
    21. 21)
      • 21. Niknam, T, Golestaneh, F, Shafiei, M.: ‘Probabilistic energy management of a renewable microgrid with hydrogen storage using self-adaptive charge search algorithm’, Energy, 2013, 49, pp. 252267.
    22. 22)
      • 22. Niknam, T, Meymand, H.Z., Mojarrad, H.D.: ‘An efficient algorithm for multiobjective optimal operation management of distribution network considering fuel cell power plants’, Energy, 2011, 36, pp. 119132.
    23. 23)
      • 23. Ippolito, M.G., Silvestre Di, M.L., Riva Sanseverinoa, E., et al: ‘Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios’, Energy, 2014, 64, pp. 648662.
    24. 24)
      • 24. Elsied, M., Oukaour, A., Gualous, H., et al: ‘An advanced energy management of microgrid system based on genetic algorithm’. 2014 IEEE 23rd Int. Symp. on Industrial Electronics (ISIE), Istanbul, 2014.
    25. 25)
      • 25. Rad, A.H.R.M., Wong, V.W.S., Jatskevich, J., et al: ‘Autonomous demand side management based on game-theoretic energy consumption scheduling for the future smart grid’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 320331.
    26. 26)
      • 26. Mohammadi, S., Soleymani, S., Mozafari, B.: ‘Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 525535.
    27. 27)
      • 27. Cau, G., Cocco, D., Ptrollese, M., et al: ‘Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system’, Energy Convers. Manage., 2014, 87, pp. 820831.
    28. 28)
      • 28. Silva, M., Morais, H., Vale, Z.: ‘An integrated approach for distributed energy resource short-term scheduling in smart grids considering realistic power system simulation’, Energy Convers. Manage., 2012, 64, pp. 273288.
    29. 29)
      • 29. Chen, C., Duan, S., Cai, T., et al: ‘Smart energy management system for optimal microgrid economic operation’, IET Renew. Power Gener., 2011, 5, pp. 258267.
    30. 30)
      • 30. Zhong, H., Xia, Q., Xia, Y., et al: ‘Integrated dispatch of generation and load: a pathway towards smart grids’, Electr. Power Syst. Res., 2015, 120, pp. 206213.
    31. 31)
      • 31. Wu, H., Liu, X., Ding, M.: ‘Dynamic economic of a microgrid: mathematical models and solution algorithm’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 336346.
    32. 32)
      • 32. Logenthiran, T., Srinivasan, D., Khambadkone, A.M., et al: ‘Optimal sizing of an islanded microgrid using evolutionary strategy’. IEEE Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS), Singapore, 2010.
    33. 33)
      • 33. Marzband, M., Sumper, A., Ruiz-Álvarez, A., et al: ‘Experimental evaluation of a real time energy management system for stand-alone microgrids in day-ahead markets’, Appl. Energy, 2013, 106, pp. 365376.
    34. 34)
      • 34. Marzband, M., Sumper, A., Domínguez-García, J.L., et al: ‘Experimental validation of a real time energy management system for microgrids in islanded mode using a local day-ahead electricity market and MINLP’, Energy Convers. Manage., 2013, 76, pp. 314322.
    35. 35)
      • 35. Basrawi, F., Yamada, T., Obara, S.: ‘Economic and environmental based operation strategies of a hybridphotovoltaic-microgas turbine trigeneration system’, Appl. Energy, 2014, 121, pp. 174183.
    36. 36)
      • 36. Niknam, T., Abarghooee, R.A., Narimani, M.R.: ‘An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation’, Appl. Energy, 2012, 99, pp. 455470.
    37. 37)
      • 37. Elsied, M., Oukaour, A., Gualous, H., et al: ‘Energy management and optimization in microgrid system based on green energy’, Energy J., 2015, 84, pp. 139151.
    38. 38)
      • 38. Logenthiran, T., Srinivasan, D., Khambadkone, A.M.: ‘Multi-agent system for energy resource scheduling of integrated micro grids in a distributed system’, Electr. Power Syst. Res., 2011, 81, (1), pp. 138148.
    39. 39)
      • 39. Ricalde, L.J., Ordonez, E., Gamez, M., et al: ‘Design of smart grid management system with renewable energy generation’. IEEE Symp. on Computational Intelligence Applications in Smart Grids, Paris, France, 2011, pp. 14.
    40. 40)
      • 40. Grimaccia, F., Mussetta, M., Zich, R.E.: ‘Advanced predictive models towards PV energy integration in smart grid’. IEEE Int. Conf. on Fuzzy Systems (FUZZY IEEE), Brisbane, Australia, 2012, pp. 16.
    41. 41)
      • 41. Moghaddam, A.A., Seifi, A., Niknam, T., et al: ‘Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source’, Energy, 2011, 36, pp. 64906507.
    42. 42)
      • 42. Marzband, M., Azarinejadian, F., Savaghebi, M., et al: ‘An optimal energy management system for islanded microgrids based on multiperiod artificial bee colony combined with Markov chain’, IEEE Syst. J., 2015, 99, pp. 111.
    43. 43)
      • 43. Lin, W.-M., Tu, C.-S., Tsai, M.-T.: ‘Energy management strategy for microgrids by using enhanced bee colony optimization’, Energies, 2016, 9, (5), pp. 116.
    44. 44)
      • 44. Elsied, M., Oukaour, A., Youssef, T., et al: ‘An advanced real time energy management system for microgrids’, Energy, 2016, 114, pp. 742752.
    45. 45)
      • 45. Wang, W., Xu, Y., Khanna, M.: ‘A survey on the communication architectures in smart grid’, Comput. Netw., 2011, 55, pp. 36043629.
    46. 46)
      • 46. Gungor, V.C., Sahin, D., Kocak, T., et al: ‘Smart grid technologies: communications, technologies and standards’, IEEE Trans. Ind. Inf., 2011, 7, (4), pp. 529539.
    47. 47)
      • 47. Usman, A., Shami, S.H.: ‘Evolution of communication technologies for smart grid applications’, Renew. Sustain. Energy Rev., 2013, 19, pp. 191199.
    48. 48)
      • 48. Ancillotti, E., Bruno, R., Conti, M.: ‘The role of communication systems in smart grids: architectures, technical solutions and research challenges’, Comput. Commun., 2013, 36, pp. 16651697.
    49. 49)
      • 49. Arcos-Aviles, D., Vega, C., Guinjoan, F., et al: ‘Fuzzy logic controller design for battery energy management in a grid connected electrothermal microgrid’. 2014 IEEE 23rd Int. Symp. on Industrial Electronics (ISIE), Istanbul, Turkey, 2014.
    50. 50)
      • 50. Arcos-Aviles, D., Espinosa, N., Guinjoan, F., et al: ‘Improved fuzzy controller design for battery energy management in a grid connected microgrid’. IECON 2014 – 40th Annual Conf. of the IEEE Industrial Electronics Society, Dallas, USA, 2014.
    51. 51)
      • 51. Kamal, T., Hassan, S.Z.: ‘Energy management and simulation of photovoltaic/hydrogen/battery hybrid power system’, Adv. Sci. Technol. Eng. Syst. J., 2016, 1, (2), pp. 1118.
    52. 52)
      • 52. Pfenninger, S., Staffell, I.: ‘Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data’, Energy, 2016, 114, pp. 12511265, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2016.08.060.
    53. 53)
      • 53. Chakraborty, S., Ito, T., Senjyu, T., et al: ‘Intelligent economic operation of smart-grid facilitating fuzzy advanced quantum evolutionary method’, IEEE Trans. Sustain. Energy, 2013, 4, pp. 905916.
    54. 54)
      • 54. Liao, G.C.: ‘Solve environmental economic dispatch of smart microgrid containing distributed generation system – using chaotic quantum genetic algorithm’, Int. J. Electr. Power Energy Syst., 2012, 43, pp. 779787.
    55. 55)
      • 55. Leonori, S., De Santis, E., Rizzi, A., et al: ‘Multi objective optimization of a fuzzy logic controller for energy management in microgrids’. 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, Canada, 24–29 July 2016, pp. 319326.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.5036
Loading

Related content

content/journals/10.1049/joe.2018.5036
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address