http://iet.metastore.ingenta.com
1887

access icon openaccess Reliability and performance of optimised Schmitt trigger gates

  • HTML
    217.095703125Kb
  • PDF
    2.0288009643554688MB
  • XML
    245.259765625Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/8/JOE.2018.0091.html;jsessionid=2vi6hoq8iwhte.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.0091&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Hagiwara, T., Yamaguchi, K., Shojiro, A.: ‘Threshold voltage deviation in very small MOS transistors due to local impurity fluctuations’. Proc. Int. Symp. VLSI Technology (VLSIT'82), Oiso, Japan, pp. 4647.
    2. 2)
      • 2. Asenov, A.: ‘Random dopant induced threshold voltage lowering and fluctuations in sub-0.1µm MOSFET's: a 3-D ‘atomistic’ simulation study’, IEEE Trans. Electr. Dev., 1998, 45, (12), pp. 25052513.
    3. 3)
      • 3. Asenov, A., Brown, A.R., Davies, J.H., et al: ‘Simulation of intrinsic parameter fluctuations in decanometer and nanometer-scale MOSFETs’, IEEE Trans. Electr. Dev., 2003, 50, (5), pp. 18371852.
    4. 4)
      • 4. Asenov, A.: ‘Statistical device variability and its impact on design’. IEEE Int. Symp. Asynchronous Circuits and Systems, Newcastle, UK, Apr. 2008, pp. xvxvi.
    5. 5)
      • 5. Intl. Tech. Roadmap for Semiconductors (ITRS) 2.0, SEMATECH, Albany, NY, USA, 2015. Available at http://www.itrs2.net/.
    6. 6)
      • 6. Soeleman, H., Roy, K.: ‘Ultra-low power digital subthreshold logic circuits’. Proc. Int. Symp. Low Power Electronics and Design, San Diego, CA, USA, 1999, pp. 9496.
    7. 7)
      • 7. Giustolisi, G., Palumbo, G., Criscione, M., et al: ‘A low-voltage low-power voltage reference based on subthreshold MOSFETs’, IEEE J. Solid-State Circ., 2003, 38, (1), pp. 151154.
    8. 8)
      • 8. Marković, D., Wang, C. C., Alarcón, L. P., et al: ‘Ultralow-power design in near-threshold region’, Proc. IEEE, 2010, 98, (2), pp. 237252.
    9. 9)
      • 9. Wakerly, J. F.: ‘Microcomputer reliability improvement using triple-modular redundancy’, Proc. IEEE, 1976, 64, (6), pp. 889895.
    10. 10)
      • 10. Hamamatsu, M., Tsuchiya, T., Kikuno, T.: ‘On the reliability of cascaded TMR systems’. Proc. Pacific Rim Int. Symp. Dependable Computing (PRDC'10), Tokyo, Japan, 2010, pp. 184190.
    11. 11)
      • 11. von Neumann, J.: ‘Probabilistic logics and the synthesis of reliable organisms from unreliable components’, in Shannon, C. E., McCarthy, J., (Eds.): ‘Automata studies’ (Princeton University Press, Princeton, NJ, USA, 1956), pp. 4398.
    12. 12)
      • 12. Roy, S., Beiu, V.: ‘Multiplexing schemes for cost-effective fault-tolerance’. Proc. Int. IEEE Conf. Nanotechnology (IEEE-NANO'04), Munich, Germany, 2004, pp. 589592.
    13. 13)
      • 13. Roy, S., Beiu, V.: ‘Majority multiplexing — economical redundant fault-tolerant design for nano architectures’, IEEE Trans. Nanotechnol., 2005, 4, (4), pp. 441451.
    14. 14)
      • 14. Sadek, A. S., Nikolić, K., Forshaw, M.: ‘Parallel information and computation with restitution for noise-tolerant nanoscale logic networks’, Nanotechnology, 2004, 15, (1), pp. 192210.
    15. 15)
      • 15. Kuo, W., Rajendra Prasad, V., Tillman, F. A., et al: ‘Optimal reliability design: fundamental and applications’ (Cambridge University Press, Cambridge, UK, 2001).
    16. 16)
      • 16. Bolchini, C., Buonanno, G., Sciuto, D., et al: ‘A CMOS fault tolerant architecture for switch-level faults’. Proc. Int. Workshop Defect & Fault Tolerance VLSI System (DFT'94), Montreal, Canada, October 1994, pp. 1018.
    17. 17)
      • 17. Bolchini, C., Buonanno, G., Sciuto, D., et al: ‘Static redundancy techniques for CMOS gates’. Proc. Int. Symp. Circulatory System (ISCAS'96), Atlanta, GA, USA, May 1996, pp. 576579.
    18. 18)
      • 18. Bolchini, C., Buonanno, G., Sciuto, D., et al: ‘An improved fault tolerant architecture at CMOS level’. Proc. Int. Symp. Circulatory System (ISCAS'97), Kowloon, Hong Kong, June 1997, pp. 27372740.
    19. 19)
      • 19. Baze, M. P., Buchner, S. P., McMorrow, D.: ‘A digital CMOS design technique for SEU hardening’, IEEE Trans. Nuclear Sci., 2000, 47, (6), pp. 26032608.
    20. 20)
      • 20. Beiu, V.: ‘Ultra-fast noise immune CMOS threshold gates’. Proc. Int. Midwest Symp. Circulatory System (MWSCAS'00), Lansing, MI, USA, August 2000, pp. 13101313.
    21. 21)
      • 21. Tatapudi, S., Beiu, V.: ‘Split-precharge differential noise-immune threshold logic gate (SPD-NTL)’. Proc. Int. Work-Conf. Artificial Neural Networks (IWANN'03), Menorca, Spain, Springer, LNCS 2687, Jun. 2003, pp. 4956.
    22. 22)
      • 22. Schmid, A., Leblebici, Y.: ‘Robust circuit and system design methodologies for nanometer-scale devices and single-electron transistors’. Proc. Int. IEEE Conf. Nanotechnogoy (IEEE-NANO'03), San Francisco, CA, USA, Aug. 2003, vol. 2, pp. 516519.
    23. 23)
      • 23. Schmid, A., Leblebici, Y.: ‘Robust circuit and system design methodologies for nanometer-scale devices and single-electron transistors’, IEEE Trans. VLSI Syst., 2004, 12, pp. 11561166.
    24. 24)
      • 24. Aunet, S., Hartmann, M.: ‘Real-time reconfigurable linear threshold elements and some applications to neural hardware’. Proc. Int. Conf. Evolvable System (ICES'03), Trondheim, Norway, Mar. 2003, pp. 365376.
    25. 25)
      • 25. Aunet, S., Beiu, V.: ‘Ultra low power fault tolerant neural inspired CMOS logic’. Proc. Int. Joint Conf. Neural Networks (IJCNN'05), Montreal, Canada, Aug. 2005, pp. 28432848.
    26. 26)
      • 26. Aunet, S., Berg, Y., Beiu, V.: ‘Ultra low power redundant logic based on majority-3 gates’. Proc. IFIP Int. Conf. VLSI System on Chip (VLSI-SoC'05), Perth, Australia, October 2005, pp. 553558.
    27. 27)
      • 27. Granhaug, K., Aunet, S.: ‘Improving yield and defect tolerance in multifunction subthreshold CMOS gates’. Proc. Int. Symp. Defect & Fault-Tolerance VLSI System (DFT'06), Arlington, VA, USA, Oct. 2006, pp. 2028.
    28. 28)
      • 28. Granhaug, K., Aunet, S.: ‘Improving yield and defect tolerance in subthreshold CMOS through output-wired redundancy’, J. Electr. Test., 2008, 24, (1–3), pp. 157163.
    29. 29)
      • 29. Tryon, J. G.: ‘Quadded logic’, in Wilcox, R. H., Mann, W. C., (Eds.): ‘Redundancy techniques for computing systems’ (Spartan Books, Washington, DC, USA, 1962), pp. 205228.
    30. 30)
      • 30. Anghel, L., Nicolaidis, M.: ‘Defects tolerant logic gates for unreliable future nanotechnologies’. Proc. Intl. Work Conf. Artificial Neural Nets (IWANN'07), San Sebastián, Spain, June 2007, pp. 422429.
    31. 31)
      • 31. Djupdal, A., Haddow, P. C.: ‘Defect tolerant ganged CMOS minority gate’. Proc. NORCHIP'07, Aalborg, Denmark, Novemberr 2007, art. 4481060, pp. 14.
    32. 32)
      • 32. El-Maleh, A. H., Al-Hashimi, B. M., Melouki, A.: ‘Transistor-level based defect tolerance for reliable nanoelectronics’. Proc. Intl. Conf. Computer Systems Applications. (AICCSA'08), Doha, Qatar, Mar. 2008, pp. 5360.
    33. 33)
      • 33. Moritz, C. A., Wang, T.: ‘Towards defect-tolerant nanoscale architectures’. Proc. IEEE Conf. Nanotechnology (IEEE-NANO'06), Cincinnati, OH, USA, Jul. 2006, pp. 331334.
    34. 34)
      • 34. Wang, T., Bennaser, M., Guo, Y., et al: ‘Combining circuit level and system level techniques for defect-tolerant architectures’. Proc. Intl. Workshop on Defect and Fault Tolerant Nanoscale Architecture (NanoArch'06), Boston, MA, USA, Jun. 2006.
    35. 35)
      • 35. Chen, C.: ‘Reliability-driven gate replication for nanometer-scale digital logic’, IEEE Trans. Nanotechnol., 2007, 6, (3), pp. 303308.
    36. 36)
      • 36. Martorell, F., Rubio, A.: ‘Cell architecture for nanoelectronic design’, Microelectr. J., 2008, 39, (8), pp. 10411050.
    37. 37)
      • 37. Flak, J., Laiho, M., Paasio, A.: ‘Fault-tolerant architecture for nanoelectronics digital logic’. Proc. Intl. Conf. Signal & Electrical Systems (ICSES'08), Krakow, Poland, September 2008, pp. 545548.
    38. 38)
      • 38. Flak, J., Laiho, M.: ‘Fault-tolerant programmable logic array for nanoelectronics’, Int. J. Circ. Theory Appl., 2012, 40, (12), pp. 12331247.
    39. 39)
      • 39. Hauser, J. R.: ‘Noise margin criteria for digital logic circuits’, IEEE Trans. Edu., 1993, 36, (4), pp. 363368.
    40. 40)
      • 40. Schmitt, O. H.: ‘A thermionic trigger’, J. Sci. Instrum., 1938, 15, (1), pp. 2426.
    41. 41)
      • 41. Ikeda, N.: ‘Schmitt trigger input buffer circuit’. US Patent 5327020, July 5, 1994.
    42. 42)
      • 42. Morimura, H., Shimannura, T., Fujii, K., et al: ‘A zero-sink-current Schmitt trigger and window-flexible counting circuit for fingerprint sensor/identifier’. Proc. Int. Solid-State Circuits Conf. (ISSCC'04), San Fransisco, CA, USA, 2004, vol. 122–124, pp. 511517.
    43. 43)
      • 43. Kim, H., Kim, H.-J., Chung, W.-S.: ‘Pulse width modulation circuits using CMOS OTAs’, IEEE Trans. Circ. Syst. I, 2007, 54, (9), pp. 18691878.
    44. 44)
      • 44. Chen, Y.-N., Hsieh, C.-Y., Fan, M.-L., et al: ‘Impacts of intrinsic device variations on the stability of FinFET subthreshold SRAMs’. Proc. Int. Conf. IC Design and Technology (ICICDT'11), Kaohsiung, Taiwan, 2011, art. 5783210, pp. 14.
    45. 45)
      • 45. Kulkarni, J. P., Roy, K.: ‘Ultralow voltage process variation tolerant Schmitt trigger based SRAM design’, IEEE Trans. VLSI, 2012, 20, (2), pp. 319332.
    46. 46)
      • 46. Hsieh, C.-Y., Fan, M.-L., Hu, V. P.-H., et al: ‘Independently-controlled-gate FinFET Schmitt trigger sub-threshold SRAMs’, IEEE Trans. VLSI Syst., 2012, 20, (7), pp. 12011210.
    47. 47)
      • 47. Lotze, N., Manoli, Y.: ‘A 62 mV 0.13 µm CMOS standard-cell-based design technique using Schmitt-trigger logic’, IEEE J. Solid-State Circ., 2011, 47, (1), pp. 4760.
    48. 48)
      • 48. Ibrahim, W., Beiu, V., Beg, A.: ‘Optimum reliability sizing for complementary metal oxide semiconductor gates’, IEEE Trans. Reliab., 2012, 61, (3), pp. 675686.
    49. 49)
      • 49. Beiu, V., Beg, A., Ibrahim, W., et al: ‘Enabling sizing for enhancing the static noise margins’. Proc. Int. Symp. Quality Electronic Design (ISQED'13), Santa Clara, CA, USA, 2013, pp. 278285.
    50. 50)
      • 50. Dokić, B. L.: ‘CMOS regenerative logic circuits’, Microelectr. J., 1983, 14, (5), pp. 2130.
    51. 51)
      • 51. Dokić, B. L.: ‘CMOS Schmitt triggers’, IEE Proc. Part G, 1984, 131, (5), pp. 197202.
    52. 52)
      • 52. Filanovsky, I., Baltes, H.: ‘CMOS Schmitt trigger design’, IEEE Trans. Circ. Syst. I, 1994, 41, (1), pp. 4649.
    53. 53)
      • 53. Zhang, C., Srivastava, A., Ajmera, P. K.: ‘Low voltage CMOS Schmitt trigger circuits’, IEE Electr. Lett., 2003, 39, (24), pp. 16961698.
    54. 54)
      • 54. Marzaki, A., Bidal, V., Laffont, R.: ‘Wenceslas Rahajandraibe, Jean-Michel Portal, and Rashid Bouchakour. A new adjustable Schmitt trigger based on dual control gate-floating gate transistor (DCG-FGT)’. Proc. Mid-West Symp. Circuits and Systems (MWSCAS'12), Boise, ID, USA, 2012, pp. 643645.
    55. 55)
      • 55. Yuan, F.: ‘Differential CMOS Schmitt trigger with tunable hysteresis’, Analog Integ. Circ. Signal, 2010, 62, (2), pp. 245248.
    56. 56)
      • 56. Rashid, H., Mamun Ibne Reaz, M., Syedul Amin, M., et al: ‘Design of a low voltage Schmitt trigger in 0.18 µm CMOS process with tunable hysteresis’, Mod. Appl. Sci., 2013, 7, (4), pp. 4755.
    57. 57)
      • 57. Donato, M., Cremona, F., Jin, W., et al: ‘A noise-immune sub-threshold circuit design based on selective use of Schmitt-trigger logic’. Proc. Great Lakes Symp. VLSI (GLSVLSI'12), Salt Lake City, UT, USA, May 2012, pp. 3944.
    58. 58)
      • 58. Gupta, P., Kahng, A. B., Sharma, P., et al: ‘Selective gate-length biasing for cost-effective runtime leakage control’. Proc. Design Automation Conf. (DAC'04), San Diego, CA, USA, 2004, pp. 327330.
    59. 59)
      • 59. Gupta, P., Kahng, A. B.: ‘Gate-length biasing for circuit optimization’. US Patent 8127266, February 28, 2012.
    60. 60)
      • 60. Beiu, V., Beg, A., Ibrahim, W., et al: ‘Towards ultra-low power/voltage using unconventionally sized arrays of transistors’. Proc. Int. IEEE Conf. Nanotechnology (IEEE-NANO'12), Birmingham, UK, 2012a, art. 6322071, pp. 15.
    61. 61)
      • 61. Ibrahim, W., Beg, A., Beiu, V.: ‘Highly reliable and low-power full adder cell’. Proc. Int. IEEE Conf. Nanotechnology (IEEE-NANO'11), Portland, OR, USA, 2011, pp. 500503.
    62. 62)
      • 62. Beiu, V., Beg, A., Ibrahim, W.: ‘Atto-Joule gates for the whole voltage range’. Proc. Int. IEEE Conf. Nanotechnology (IEEE-NANO'11), Portland, OR, USA, 2011, pp. 14241429.
    63. 63)
      • 63. Beiu, V., Iordaconiu, L., Beg, A., et al: ‘Low power and highly reliable gates using arrays of optimally sized transistors’. Proc. Int. Semiconductor Conf. (CAS'12), Sinaia, Romania, 2012b, pp. 433436.
    64. 64)
      • 64. Beiu, V., Tache, M., Ibrahim, W., et al: ‘On upsizing length and noise margins’. Proc. Int. Semiconductor Conf. (CAS'13), Sinaia, Romania, 2013, pp. 219222.
    65. 65)
      • 65. Tache, M., Beiu, V., Ibrahim, W., et al: ‘Sizing for static noise margins revisited’. Proc. European Workshop on CMOS Variability (VARI'13), Karlsruhe, Germany, 2013, in press.
    66. 66)
      • 66. Ibrahim, W., Beiu, V.: ‘Using Bayesian networks to accurately calculate the reliability of complementary metal oxide semiconductor gates’, IEEE Trans. Reliab., 2011, 60, (3), pp. 538549.
    67. 67)
      • 67. Predictive Technology Model (PTM). Available at: http://ptm.asu.edu/.
    68. 68)
      • 68. Zhao, W., Cao, Y.: ‘New generation of predictive technology model for sub-45 nm early design exploration’, IEEE Trans. Electr. Dev., 2006, 53, (11), pp. 28162823.
    69. 69)
      • 69. Zhao, W., Cao, Y.: ‘Predictive technology model for nano-CMOS design exploration’, ACM J. Emerg. Technol. Comput. Syst., 2007, 3, (1), pp. 117.
    70. 70)
      • 70. Berkeley Short-channel IGFET Model (BSIM4.8.0). 2013. Available at: http://bsim.berkeley.edu/models/bsim4/.
    71. 71)
      • 71. Hanson, S., Seok, M., Sylvester, D., et al: ‘Nanometer device scaling in subthreshold logic and SRAM’, IEEE Trans. Electr. Dev., 2008, 55, (1), pp. 175185.
    72. 72)
      • 72. Zavyalova, L., Lucas, K., Zhang, Q., et al: ‘Analysis of OPC optical model accuracy with detailed scanner information’. Proc. SPIE 6924: Optical Microlithography XXI, San Jose, CA, USA, 2008, art. 69241D, pp. 112.
    73. 73)
      • 73. Lohstroh, J.: ‘Static and dynamic noise margins of logic circuits’, IEEE J. Solid-State Circ., 1979, 14, (3), pp. 591598.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.0091
Loading

Related content

content/journals/10.1049/joe.2018.0091
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address