http://iet.metastore.ingenta.com
1887

access icon openaccess Adaptive hysteresis based multifunctional electric vehicle charger with a single feedback loop controller

  • XML
    95.7158203125Kb
  • HTML
    115.8115234375Kb
  • PDF
    3.667224884033203MB
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/8/JOE.2018.0075.html;jsessionid=15g19omtm3kui.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.0075&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Wirasingha, S.G., Schofield, N., Emadi, A.: ‘Plug-in hybrid electric vehicle developments in the US: trends, barriers, and economic feasibility’. IEEE Vehicle Power and Propulsion Conf., 2007 VPPC 2007, Harbin, China, September 2008, pp. 18.
    2. 2)
      • 2. Graham-Rowe, E., Gardner, B., Abraham, C., et al: ‘Mainstream consumers driving plug-in battery-electric and plug-in hybrid electric cars: a qualitative analysis of responses and evaluations’, Transp. Res. A, Policy Pract., 2012, 46, (1), pp. 140153.
    3. 3)
      • 3. Parks, K., Denholm, P., Markel, T.: ‘Costs and emissions associated with plug-in hybrid electric vehicle charging in the Xcel energy Colorado service territory. No. NREL/TP-640–41410’. National Renewable Energy Laboratory (NREL), Golden, CO, 2007.
    4. 4)
      • 4. Mwasilu, F, Justo, J.J., Kim, E.-K., et al: ‘Electric vehicles and smart grid interaction: a review on vehicle to grid and renewable energy sources integration’, Renew. Sust. Energy Rev., 2014, 34, pp. 501516.
    5. 5)
      • 5. Van Vliet, O., Brouwer, A.S., Kuramochi, T., et al: ‘Energy use, cost and CO2 emissions of electric cars’, J. Power Sources, 2011, 196, (4), pp. 22982310.
    6. 6)
      • 6. Saber, A.Y., Venayagamoorthy, G.K.: ‘Plug-in vehicles and renewable energy sources for cost and emission reductions’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12291238.
    7. 7)
      • 7. Nursebo, S.: ‘Model based approach to supervision of fast charging’, Chalmers University of Technology. http://webfiles.portal.chalmers.se/et/MSc/ShemsedinNursebo.pdf, 2010.
    8. 8)
      • 8. Rajapakse, A., Muthumuni, D., Perera, N.: ‘Grid integration of renewable energy systems’, http://cdn.intechopen.com/pdfs/9325/InTech, 2011.
    9. 9)
      • 9. Yilmaz, M., Krein, P.T.: ‘Review of battery charger topologies, charging power levels and infrastructure for plug-in electric and hybrid vehicles’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 21512169.
    10. 10)
      • 10. Khaligh, A., Dusmez, S.: ‘Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles’, IEEE Trans. Veh. Technol., 2012, 61, (8), pp. 34753489.
    11. 11)
      • 11. Hartmann, M., Friedli, T., Kolar, J.W.: ‘Three-phase unity power factor mains interfaces of high power EV battery charging systems’. ECPE Workshop Power Electronics for Charging Electric Vehicles, Valencia, Spain, March 21–22 2011.
    12. 12)
      • 12. Revolutionizing fast charging for electric vehicles. Intel, 2013 July. Available at: http://www.intel.com /content/www/us/en/energy/transportation-abb-terra-smart-connect-brief.html.
    13. 13)
      • 13. Ortega-Vazquez Miguel, A., Bouffard, F., Silva, V.: ‘Electric vehicle aggregator/system operator coordination for charging scheduling and services procurement’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 18061815.
    14. 14)
      • 14. Sarker, M.R., Pandžić, H., Ortega-Vazquez, M.A.: ‘Optimal operation and services scheduling for an electric vehicle battery swapping station’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 901910.
    15. 15)
      • 15. Loisel, R., Pasaoglu, G., Thiel, C.: ‘Large-scale deployment of electric vehicles in Germany by 2030: an analysis of grid-to-vehicle and vehicle-to-grid concepts’, Energy Policy, 2014, 65, pp. 432443.
    16. 16)
      • 16. Ustun, T.S, Ozansoy, C.R., Zayegh, A.: ‘Implementing vehicle-to-grid (V2G) technology with IEC 61850-7-420’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 11801187.
    17. 17)
      • 17. Rivera, S., Wu, B, Kouro, S., et al: ‘Electric vehicle charging station using a neutral point clamped converter with bipolar DC bus’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 19992009.
    18. 18)
      • 18. Sbordone, D., Bertini, I., Di Pietra, B., et al: ‘EV fast charging stations and energy storage technologies: a real implementation in the smart micro grid paradigm’, Electr. Power Syst. Res., 2015, 120, pp. 96108.
    19. 19)
      • 19. Li, Z., Li, Y., Wang, P., et al: ‘Control of three-phase boost-type PWM rectifier in stationary frame under unbalanced input voltage’, IEEE, 2010, 25, (10), pp. 2521-2530.
    20. 20)
      • 20. Singh, B., Singh, B.N., Chandra, A., et al: ‘A review of three-phase improved power quality ac–dc converters’, IEEE Trans. Ind. Electron., 2004, 51, (3), pp. 641660.
    21. 21)
      • 21. Suh, Y.S., Tijeras, V., Lipo, T.A.: ‘A control method in dq synchronous frame for PWM boost rectifier under generalized unbalanced operating conditions’. Proc. IEEE PESC, Cairns, Australia, June 2002, pp. 14251430.
    22. 22)
      • 22. Lasseter, R., Hochgraf, C.: ‘Statcom controls for operation with unbalanced voltages’, IEEE Trans. Power Deliv., 1998, 13, (2), pp. 538544.
    23. 23)
      • 23. Kumar, C., Mishra, M.K.: ‘A voltage-controlled DSTATCOM for power-quality improvement’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 14991507.
    24. 24)
      • 24. Suhara, E.M., Nandakumar, M.: ‘Analysis of hysteresis current control techniques for three phase PWM rectifiers’. 2015 IEEE Int. Conf. on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Calicut,India, 2015, pp. 15.
    25. 25)
      • 25. Suhara, E.M., Nandakumar, M., Mathew, K.: ‘Novel adaptive hysteresis current control of bidirectional three phase PWM converter under reduced switching scheme’, IEEE PEDES, Trivandrum,India, 2016, pp. 16.
    26. 26)
      • 26. Suhara E, M., Nandakumar, M.: ‘Analysis of hysteresis current controlled three phase PWM rectifier with reduced switching loss’. Control Instrumentation Systems Conf. (CISCON), Thrissur,India, 2015.
    27. 27)
      • 27. Suhara, E.M., Nandakumar, M., Mathew, K.: ‘Hardware implementation issues of FPGA based prototyping for hysteresis current controlled three phase PWM rectifier’, Int. J. Appl. Eng. Res., 2018, 13, (2), pp. 830839.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.0075
Loading

Related content

content/journals/10.1049/joe.2018.0075
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address