http://iet.metastore.ingenta.com
1887

access icon openaccess Genetic algorithm-based non-linear auto-regressive with exogenous inputs neural network short-term and medium-term uncertainty modelling and prediction for electrical load and wind speed

  • HTML
    111.2998046875Kb
  • XML
    109.1669921875Kb
  • PDF
    4.024231910705566MB
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/8/JOE.2017.0873.html;jsessionid=4bt896ai794te.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2017.0873&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Fan, S., Hyndman, R. J.: ‘Forecasting electricity demand in Australian national electricity market’. 2012 IEEE Conf. Power and Energy Society General Meeting, July 2012, vol. 3, pp. 14.
    2. 2)
      • 2. Dalkilic, O., Candogan, O., Eryilmaz, A.: ‘Pricing algorithms for the day-ahead electricity market with flexible consumer participation’. 2013 IEEE Conf. Computer Communications Workshops (INFOCOM WKSHPS), April 2013, vol. 3, pp. 369374.
    3. 3)
      • 3. E. W. E. Association: ‘Large scale integration of wind energy in the European power supply: analysis, issues, and recommendations’o. Available at http://www.ewea.org/fileadmin/ewea_documents/documents/publications/grid/051215_Grid_report.pdf, 2005.
    4. 4)
      • 4. Georgilakis, P. S.: ‘Technical challenges associated with the integration of wind power into power systems’, Renew. Sustain. Energy Rev., 2008, 12, (3), pp. 852863.
    5. 5)
      • 5. Kangand, W. Y., Jing-Shan, H.: ‘A literature review of wind forecasting technology in the world’. Proc. IEEE Lausanne Power Tech., Lausanne, Switzerland, 2007, pp. 504509.
    6. 6)
      • 6. Quan, H., Srinivasan, D., Khosravi, A.: ‘Short-term load and wind power forecasting using neural network-based prediction intervals’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (2), pp. 303315.
    7. 7)
      • 7. Li, D., Jayaweera, S.K.: ‘Uncertainty modeling and prediction for customer load demand in smart grid’. 2013 IEEE Conf. Energytech, May 2013, pp. 16.
    8. 8)
      • 8. Taylor, J., McSharry, P.: ‘Short-term load forecasting methods: an evaluation based on European data’, IEEE Trans. Power Syst., 2007, 22, pp. 22132219.
    9. 9)
      • 9. Deng, J., Jirutitijaroen, P.: ‘Short-term load forecasting using time series analysis: a case study for Singapore’. Proc. IEEE Conf. CIS, 2010, pp. 231236.
    10. 10)
      • 10. Ahmed, K.M.U., Ampatzis, M., Nguyen, P.H., et al: ‘Application of time-series and artificial neural network models in short term load forecasting for scheduling of storage devices’. Power Engineering Conf. (UPEC), 2014 49th Int. Universities, 2–5 September 2014, pp. 16.
    11. 11)
      • 11. Garulli, A., Paoletti, S., Vicino, A.: ‘Models and techniques for electric load forecasting in the presence of demand response’, IEEE Trans. Control Syst. Technol., 2015, 23, (3), pp. 10871097.
    12. 12)
      • 12. Webberley, A., Gao, D. W.: ‘Study of artificial neural network based short term load forecasting’. 2013 IEEE Conf. Power and Energy Society General Meeting (PES), July 2013, pp. 14.
    13. 13)
      • 13. Ricalde Luis, J., Braulio, C., et al: ‘Forecasting for smart grid applications with higher order neural networks’. 2012 World Automation Congress Conf. (WAC), June 2012, pp. 16.
    14. 14)
      • 14. Feilat, E. A., Bouzguenda, M.: ‘Medium-term load forecasting using neural network approach’. Innovative Smart Grid Technologies Conf.- Middle East (ISGT Middle East), 17–20 December 2011, pp. 15.
    15. 15)
      • 15. Wai, R.-J., Huang, Y.-C., Chen, Y.-C.: ‘Intelligent daily load forecasting with fuzzy neural network and particle swarm optimization’. 2012 IEEE Int. Conf. Fuzzy Systems (FUZZ-IEEE), 10–15 June 2012, pp. 16.
    16. 16)
      • 16. Coelho, V. N., Guimaraes, F. G., Reis, A. J. R., et al: ‘A heuristic fuzzy algorithm bio-inspired by evolution strategies for energy forecasting problems’. 2014 IEEE Int. Conf. Fuzzy Systems (FUZZ-IEEE), 6–11 July 2014, pp. 338345.
    17. 17)
      • 17. Marinescu, A., Harris, C., Dusparic, I., et al: ‘A hybrid approach to very small scale electrical demand forecasting’. 2014 IEEE PES Innovative Smart Grid Technologies Conf. (ISGT), 19–22 February 2014, pp. 15.
    18. 18)
      • 18. Sahay, K. B., Tripathi, M. M.: ‘Day ahead hourly load forecast of PJM electricity market and ISO New England market by using artificial neural network’. Innovative Smart Grid Technologies - Asia (ISGT Asia), 2013 IEEE Conf., 10–13 November 2013, pp. 15.
    19. 19)
      • 19. Soman, S. S., Zareipour, H., Malik, O., et al: ‘A review of wind power and wind speed forecasting methods with different time horizons’. Proc. North American Power Symp. (NAPS), Arlington, TX, USA, 2010, pp. 18.
    20. 20)
      • 20. Azad, H. B., Mekhilef, S., Gounder, V.: ‘Long-term wind speed forecasting and general pattern recognition using neural network’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 546553.
    21. 21)
      • 21. Neural Network Toolbox, Create Create, train, and simulate shallow and deep learning neural networks, 27th July 2018, [Online] Available: https://www.mathworks.com/products/neural-network.html.
    22. 22)
      • 22. Raza, M. Q., Baharudin, Z., Nallagownden, P., et alA comparative analysis of PSO and LM based NN short term load forecast with exogenous variables for smart power generation’. 2014 5th Int. Conf. Intelligent and Advanced Systems (ICIAS), 3–5 June 2014, pp. 16.
    23. 23)
      • 23. Jawad, M.: ‘Nonlinear modelling of magnetosphere dynamics’. Master's thesis, University of Manchester, 2009.
    24. 24)
      • 24. Backcasted (actual) load profiles – historical’, http://www.ercot.com/mktinfo/loadprofile/alp/.
    25. 25)
      • 25. Stat510. Class Lecture: ‘Applied time series analysis’ (Department of Statistics Online Program, The Pennsylvania State University, USA, 2018).
    26. 26)
      • 26. Meteorological data of Texas from National Estuarine research reserve system’, http://cdmo.baruch.sc.edu/get/export.cfm/.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2017.0873
Loading

Related content

content/journals/10.1049/joe.2017.0873
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address