This is an open access article published by the IET under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/)
The positive fraction vector fitting (PFVF) is a special method to guarantee the passivity of rational models such as frequencydependent network equivalents. It involves constraints that enforce each fraction of the rational model to be passive, which are much stricter than the original passive requirements. PFVF lacks theoretical foundation but works well in practise. This study explains the rationality of PFVF by revealing important features of rational models that the complexpole fractions corresponding to dominant resonance peaks can be adjusted passive through a minor change. The numerical case corroborates the theoretical analysis.
References


1)

2. GrivetTalocia, S., Ubolli, A.: ‘A comparative study of passivity enforcement schemes for linear lumped macromodels’, IEEE Trans. Adv. Packag., 2008, 31, (4), pp. 673–683 (doi: 10.1109/TADVP.2008.926004).

2)

3. Tommasi, L. D., Deschrijver, D., Dhaene, T.: ‘Singleinput–singleoutput passive macromodeling via positive fractions vector fitting’. 12th IEEE Workshop on Signal Propagation on Interconnects, Avignon, France, 2008.

3)

4. Gustavsen, B., Semlyen, A.: ‘Rational approximation of frequency domain responses by vector fitting’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 1052–1061 (doi: 10.1109/61.772353).

4)

8. Hu, Y., Wu, W., Gole, A. M., et al: ‘A guaranteed and efficient method to enforce passivity of frequency dependent network equivalents’, IEEE Trans. Power Syst., 2017, 32, (3), pp. 2455–2463 (doi: 10.1109/TPWRS.2016.2611603).

5)

18. Semlyen, A., Gustavsen, B.: ‘A halfsize singularity test matrix for fast and reliable passivity assessment of rational models’, IEEE Trans. Power Deliv., 2009, 24, (1), pp. 345–351 (doi: 10.1109/TPWRD.2008.923406).

6)

7. Coelho, C.P., Phillips, J., Silveira, L.M.: ‘A convex programming approach for generating guaranteed passive approximations to tabulated frequencydata’, IEEE Trans. Comput.Aided Des. Integr. Circuits Syst., 2004, 23, (2), pp. 293–301 (doi: 10.1109/TCAD.2003.822107).

7)

5. Chiariello, A.G., Magistris, M.D., Tommasi, L. D., et al: ‘Numerical validation of a procedure for direct identification of passive linear multiport with convex programming’. 14th IEEE Workshop on Signal Propagation on Interconnects, 2010, pp. 141–144.

8)

4. Tommasi, L.D., Magistris, M.D., Deschrijver, D., et al: ‘An algorithm for direct identification of passive transfer matrices with positive real fractions via convex programming’, Int. J. Numer. Model.: Electron. Netw. Devices Fields, 2011, 24, (10), pp. 375–386 (doi: 10.1002/jnm.784).
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2017.0443
Related content
content/journals/10.1049/joe.2017.0443
pub_keyword,iet_inspecKeyword,pub_concept
6
6