access icon openaccess QCA circuit design of n-bit non-restoring binary array divider

The physical limitations of complementary metal-oxide semiconductor (CMOS) technology have led many researchers to consider other alternative technologies. Quantum-dot cellular automate (QCA) is one of the nanotechnologies that is being considered as possible replacements for CMOS. In this paper, a QCA circuit for an n-bit non-restoring binary array divider (NRD) is designed. The proposed divider is developed using multi-layer and a QCA structure of the three-input XOR function. Compared to the previously proposed QCA designs for NRD, the proposed design provides further reduction in cell count, latency, and area. The results for a NRD show that the proposed design enables 14.8, 14.8, and 20.3% reductions in cell count, latency, and area, respectively. In addition, the proposed divider achieves 5.5, 18.8, and 33.1% reductions in cell count, latency, and area, respectively, compared to the existing designs.

Inspec keywords: nanoelectronics; dividing circuits; quantum dots; cellular automata; logic design; nanotechnology

Other keywords: alternative technologies; complementary metal-oxide semiconductor; cell count; CMOS; n-bit nonrestoring; QCA structure; QCA designs; three-input XOR function; $4 \times 4$ divider; quantum-dot cellular automate; QCA circuit design; binary array divider; $3 \times 3$ NRD

Subjects: Digital circuit design, modelling and testing; Logic circuits; Logic and switching circuits; Logic design methods

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 20. Chabi, A.M., Roohi, A., DeMara, R.F., et al: ‘Cost-efficient QCA reversible combinational circuits based on a new reversible gate’. 18th CSI Int. Symp. on Computer Architecture and Digital Systems, IEEE, Tehran, Iran, 2015, pp. 16.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 9. Jahangir, M., Sheikhfaal, S., Angizi, S., et al: ‘Designing nanoelectronic-compatible 8-bit square root circuit by quantum-dot cellular automata’. IEEE Int. Symp., Nanoelectronic and Information Systems (iNIS), Indore, India, 2015, pp. 2328.
    11. 11)
    12. 12)
      • 1. ‘2013 International technology roadmap for semiconductors (ITRS)’, . Available at: www.semiconductors.org.
    13. 13)
    14. 14)
    15. 15)
      • 12. Kim, S-W., Swartzlander, E.E.: ‘Restoring divider design for quantum-dot cellular automata’. Proc. 11th IEEE. Conf. Nanotechnology (IEEE-NANO), Portland, OR, USA, 2011, pp. 12951300.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 7. Walus, K., Jullien, G.A., Dimitrov, V.S.: ‘Computer arithmetic structures for quantum cellular automata’. Proc. 37th Asilomar Conf. Signals, Systems and Computers, November 2003, pp. 14351439.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 19. Bahar, A.N., Waheed, S., Hossain, N., et al: ‘A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis’, Alexandria Eng. J., 2017, doi: 10.1016/j.aej.2017.01.022.
    25. 25)
      • 8. Giannou, O., Vergos, H.T., Bakalis, D.: ‘Squarers in QCA nanotechnology’. Proc. 12th IEEE. Conf. Nanotechnology (IEEE-NANO), Birmingham, UK, August 2012, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2017.0375
Loading

Related content

content/journals/10.1049/joe.2017.0375
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading