http://iet.metastore.ingenta.com
1887

access icon openaccess Contextual object categorisation with energy-based model

Loading full text...

Full text loading...

/deliver/fulltext/joe/2017/10/JOE.2017.0319.html;jsessionid=2h5fark7o37bh.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2017.0319&mimeType=html&fmt=ahah

References

    1. 1)
    2. 2)
    3. 3)
      • 3. Carbonetto, P., De Freitas, N., Barnard, K.: ‘A statistical model for general contextual object recognition’. Proc. European Conf. on Computer Vision, Part I, 2004, pp. 350362.
    4. 4)
      • 4. Rabinovich, A., Vedaldi, A., Galleguillos, C., et al: ‘Objects in context’. EEE 11th Int. Conf. Computer Vision, 2007 ICCV 2007, 2007, pp. 18.
    5. 5)
      • 5. Saathoff, C., Staab, S.: ‘Exploiting spatial context in image region labelling using fuzzy constraint reasoning’. Ninth Int. Workshop on Image Analysis for Multimedia Inter-active Services, Klagenfurt, Austria, Los Alamitos, 2008, pp. 1619.
    6. 6)
    7. 7)
      • 7. Cinbis, R.G., Sclaroff, S.: ‘Contextual object detection using set-based classification’. Computer Vision – ECCV, 2012, pp. 4357.
    8. 8)
    9. 9)
    10. 10)
      • 10. Yuan, J., Li, J., Zhang, B.: ‘Exploiting spatial context constraints for automatic image region annotation’. Proc. 15th ACM Int. Conf. Multimedia ACM, 2007, pp. 595604.
    11. 11)
      • 11. Verbeek, J., Triggs, W.: ‘Scene segmentation with conditional random fields learned from partially labeled images’. Proc. NIPS, 2007, pp. 18.
    12. 12)
      • 12. Galleguillos, C., Rabinovich, A., Belongie, S.: ‘Object categorization using co-occurrence, location and appearance’. IEEE Conf. Computer Vision and Pattern Recognition, CVPR 2008, 2008, pp. 18.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 17. Divvala, S.K., Hoiem, D., Hays, J.H., et al: ‘An empirical study of context in object detection. In computer vision and pattern recognition, 2009’. IEEE Conf. CVPR 2009, 2009, pp. 12711278.
    18. 18)
      • 18. LeCun, Y., Chopra, S., Hadsell, R.M., et al: ‘A tutorial on energy-based learning’, in Bakir, G., Hofman, T., Scholkopf, B., et al (EDs.): ‘Predicting structured data’ (MIT Press, 2006), pp. 191246.
    19. 19)
    20. 20)
      • 20. Russell, B., Torralba, A., Liu, C., et al: ‘Object recognition by scene alignment’, Adv. Neural Inf. Process. Syst., 2007, 20, pp. 12411248.
    21. 21)
    22. 22)
      • 22. Torralba, A., Murphy, K.P., Freeman, W.T.: ‘Contextual models for object detection using boosted random fields’, in Saul, L.K., Weiss, Y., Bottou, L. (Eds.): ‘Advances in neural information processing systems’, vol. 17 (MIT Press, Cambridge, MA, 2004), pp. 14011408.
    23. 23)
    24. 24)
      • 24. Singaraju, D., Vidal, R.: ‘Using global bag of features models in random fields for joint categorization and segmentation of objects’. 2011 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2011, pp. 23132319.
    25. 25)
      • 25. Jain, A., Zappella, L., McClure, P., et al: ‘Visual dictionary learning for joint object categorization and segmentation’. Computer Vision – ECCV 2012, 2012, pp. 718731.
    26. 26)
      • 26. Angin, P., Bhargava, B.: ‘A confidence ranked co-occurrence approach for accurate object recognition in highly complex scenes’, J. Internet Technol., 2013, 14, (1), pp. 1319.
    27. 27)
      • 27. Sun, T., Zhang, C., Liu, J., et al: ‘Object categorization using local feature context’. Int. Conf. Multimedia Modeling, 2013, pp. 327333.
    28. 28)
      • 28. Ri, C.Y., Yao, M.: ‘Semantic image segmentation based on spatial context relations’. 2012 Int. Symp. Information Science and Engineering (ISISE), 2012, pp. 104108.
    29. 29)
      • 29. Besag, J.: ‘On the statistical analysis of dirty pictures’, J. R. Stat. Soc. B, 1986, 48, (3), pp. 259302.
    30. 30)
    31. 31)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2017.0319
Loading

Related content

content/journals/10.1049/joe.2017.0319
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address