Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Development of a generalised PV model in MATLAB/Simulink using datasheet values

This study proposes an improved single-diode modelling approach for photovoltaic (PV) modules suitable for a broad range of the PV technologies available today, including modules based on tandem cell structures. After establishing the model (which has an overall of seven parameters), this study devises a methodology to estimate its parameters using Standard Test Conditions (STC) data, Nominal Operating Cell Temperature (NOCT) data, and temperature coefficient values as provided in most manufacturers’ datasheets. Simulation results and their comparison with a previous work show a very accurate prediction of critical points in the current-voltage characteristics curve. The precise prediction happens for both STC and NOCT conditions and the error in predicting maximum power point (MPP) lies within 1% limit, and the error in its corresponding voltage and current is almost always within 2% limit. Further, for both MPP and open-circuit voltage, the statistical variance around manufacturer measurements due to temperature changes is demonstrated to be low for five various module technologies.

References

    1. 1)
      • 11. Seo, Y.-T., Park, J.-Y., Choi, S.-J.: ‘A rapid iv curve generation for pv model based solar array simulators’. Energy Conversion Congress and Exposition (ECCE), 2016, 2016, pp. 15.
    2. 2)
      • 20. Dolan, J.A., Lee, R., Yeh, Y.-H., et al: ‘Neural network estimation of photovoltaic i–v curves under partially shaded conditions’. The 2011 Int. Joint Conf. Neural Networks (IJCNN), 2011, pp. 13581365.
    3. 3)
      • 3. Sera, D., Teodorescu, R., Rodriguez, P.: ‘Pv panel model based on datasheet values’. IEEE Int. Symp. Industrial Electronics, 2007, ISIE 2007, 2007, pp. 23922396.
    4. 4)
      • 24. Tsai, H.-L., Tu, C.-S., Su, Y.-J., et al: ‘Development of generalized photovoltaic model using matlab/simulink’. Proc. of the World Congress on Engineering and Computer Science, San Francisco, USA, 2008, vol. 2008, pp. 16.
    5. 5)
    6. 6)
      • 25. Walker, G.R.: ‘Evaluating mppt converter topologies using a matlab pv model’, AUPEC 2000: Innovation for Secure Power, 2000, 1, pp. 138143.
    7. 7)
    8. 8)
    9. 9)
      • 17. Bätzner, D., Romeo, A., Zogg, H., et al: ‘Cdte/cds solar cell performance under low irradiance’. 17th EC PV Solar Energy Conf., Munich, Germany, 2001.
    10. 10)
    11. 11)
      • 22. Solanki, C.S.: ‘Solar photovoltaics: fundamentals, technologies and applications’ (PHI Learning Pvt. Ltd., Delhi, India, 2015).
    12. 12)
    13. 13)
    14. 14)
      • 1. Luque, A., Hegedus, S.: ‘Handbook of photovoltaic science and engineering’ (John Wiley & Sons, Chichester, UK, 2011).
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 29. MacAlpine, S.M., Brandemuehl, M.J.: ‘Photovoltaic module model accuracy at varying light levels and its effect on predicted annual energy output’. 2011 37th IEEE Photovoltaic Specialists Conf. (PVSC), 2011, pp. 002 894002 899.
    21. 21)
      • 33. Gen, M., Cheng, R.: ‘Genetic algorithms and engineering optimization’, vol. 7 (John Wiley & Sons, New York, USA, 2000).
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2017.0257
Loading

Related content

content/journals/10.1049/joe.2017.0257
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address