access icon openaccess Three-level boost converter with zero voltage transition

As compared with the traditional boost converter, the three-level boost converter possesses several advantages, such as lower switch voltage stresses and lower inductor current ripple. To improve the efficiency, this paper proposes a zero voltage transition (ZVT) three-level boost converter. With the proposed ZVT circuit, the switches can achieve soft switching. Moreover, by using the voltage balance control, the output voltage can be equally across the output capacitors. In this study, the effectiveness of the proposed topology is verified by the experimental results based on the field-programmable gate array control.

Inspec keywords: power convertors; zero voltage switching; field programmable gate arrays; zero current switching; inductors

Other keywords: ZVT circuit; three-level boost converter; voltage balance control; field-programmable gate array control; soft switching; inductor; voltage stresses; zero voltage transition; capacitors

Subjects: Logic circuits; Power electronics, supply and supervisory circuits; Inductors and transformers

References

    1. 1)
    2. 2)
      • 34. Rodrigues, J.P., Barbi, I., Perin, A.J.: ‘Buck converter with ZVS three level buck clamping’. IEEE Power Electronics Specialists Conf., 2008, pp. 21842190.
    3. 3)
    4. 4)
      • 3. Coelho, K.D., Barbi, I.: ‘The three-level double-ended forward converter’. IEEE Power Electronics Specialists Conf., 2003, vol. 3, pp. 13961400.
    5. 5)
      • 8. Gu, Y., Lu, Z., Qian, Z.: ‘Three level LLC series resonant DC/DC converter’. IEEE Applied Power Electronics Conf. and Exposition, 2004, vol. 3, pp. 16471652.
    6. 6)
      • 45. Yao, G., He, H., Deng, Y., et al: ‘A ZVT PWM three level boost converter for power factor preregulator’. IEEE Power Electronics Specialists Conf., 2006, pp. 15.
    7. 7)
      • 4. Coelho, K.D., Barbi, I.: ‘The three-level double-ended flyback converter’. IEEE Int. Symp. Industrial Electronics, 2003, vol. 1, pp. 651655.
    8. 8)
      • 42. Zhang, M.T., Jiang, Y., Lee, F.C., et al: ‘Single-phase three-level boost power factor correction converter’. IEEE Applied Power Electronics Conf. and Exposition, 1995, vol. 1, pp. 434439.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 14. Jiang, Y., Yang, Y., Cheng, R.: ‘Research on the passive integration in ZCS buck quasi-resonant converter’. 2005 International Conference on Electrical Machines and Systems, Nanjing, China, September2005, vol. 2, pp. 11361340.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 19. Shukla, J., Fernandes, B.G.: ‘Novel three-phase high-quality multi-resonant rectifiers operating with zero-current-switching and constant switching frequency’. IEEE Industry Applications, 2004, vol. 1, pp. 437444.
    17. 17)
    18. 18)
    19. 19)
      • 46. Lin, W., Huang, J., Chen, H.: ‘A high efficiency zero-voltage-switching boost voltage doubler with low conduction losses’. IEEE Power Electronics Specialists Conf., 2007, pp. 773777.
    20. 20)
      • 12. Lin, J.-L., Lew, J.-S.: ‘Robust controller design for a resonant DC-to-DC power converter’, IEEE Trans. Power Electron., 1997, 14, (5), pp. 793802.
    21. 21)
      • 22. Ogura, K., Chandhaket, S., Ahmed, T., et al: ‘Boost chopper-fed ZVS-PWM DC-DC converter with parasitic oscillation surge suppression-based auxiliary edge resonant snubber’. IEEE Int. Telecommunications Energy, 2003, pp. 2026.
    22. 22)
    23. 23)
      • 11. Agamy, M.S., Jain, P.K.: ‘A new zero voltage switching single stage power factor corrected three level resonant AC/DC converter’. IEEE Industrial Electronics Society, 2005, vol. 3, pp. 19921999.
    24. 24)
    25. 25)
    26. 26)
      • 18. Arulselvi, S., Archana, T., Uma, G.: ‘Design and implementation of CF-ZVS-QRC using analog resonant controller UC3861 for aerospace applications’. IEEE Proc. of Int. Conf. Power System Technology, 2004, vol. 2, pp. 12701275.
    27. 27)
      • 21. Saha, S.S., Majumdar, B., Halder, T., et al: ‘New fully soft-switched boost-converter with reduced conduction losses’. IEEE Power Electronics and Drive Systems, 2006, pp. 107112.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • 1. Meynard, T.A., Foch, H.: ‘Multi-level conversion: high voltage choppers and voltage-source inverters’. IEEE Power Electronics Specialists Conf., 1992, vol. 1, pp. 397403.
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • 28. Duarte, C.M.C., Barbi, I.: ‘A family of ZVS-PWM active-clamping DC-to-DC converters: synthesis, analysis, design, and experimentation’, IEEE Trans. Power Electron., 1997, 44, (8), pp. 698704.
    36. 36)
      • 6. Tian, J., Petzoldt, J., Reimann, T., et al: ‘Control system analysis and design of a resonant inverter with the variable frequency variable duty cycle scheme’. IEEE Conf. on Industrial Electronics and Applications, 2006, pp. 16.
    37. 37)
      • 44. Yao, G., Ma, M., Deng, Y., et al: ‘An improved ZVT PWM three level boost converter for power factor preregulator’. IEEE Power Electronics Specialists Conf., 2007, pp. 768772.
    38. 38)
      • 9. Ye, Z.M., Jain, P.K., Sen, P.C.: ‘Two stage resonant inverter for AC distributed power supply’. IEEE Industrial Electronics Society, 2004, vol. 1, pp. 239244.
    39. 39)
      • 27. Lo, Y.-K., Kao, T.-S., Lin, J.-Y.: ‘Analysis and design of an interleaved active-clamping forward converter’, IEEE Trans. Power Electron., 2007, 54, (4), pp. 23232332.
    40. 40)
      • 15. Jiang, Y., Yang, Y.-G., Liang, H.-Y., Cheng, R.-J.: ‘Research on the planar magnetic integration in quasi-resonant converters’. IEEE Int. Conf. Industrial Technology, 2005, pp. 8185.
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
      • 16. Ma, K.-S., Joug, G.-B., Kim, Y.-M.: ‘New zero-current switching PWM converter using power MOSFET for lower power applications’. IEEE Power Electronics Specialists Conf., 2002, pp. 955960.
    46. 46)
    47. 47)
      • 5. Sugimura, H., Lee, H.-W., Eid, A.M., et al: ‘A voltage-fed series load resonant high frequency inverter with ZCS-PDM scheme for Induction-heated fusing roller and extended circuit topologies’. 3rd IET Int. Conf. Power Electronics, Machines and Drives, 2006., 2006, pp. 146151.
    48. 48)
      • 47. Dusmez, S., Khaligh, A., Hasanzadeh, A.: ‘A zero-voltage-transition bidirectional DC/DC converter’, IEEE Trans. Power Electron., 2015, 62, (5), pp. 31523161.
    49. 49)
      • 10. Ye, Z.M., Jain, P.K., Sen, P.C.: ‘Two stage resonant inverter for AC distributed power supply-topology featured with zero voltage switching’. IEEE Industrial Electronics Society, 2004, vol. 1, pp. 227232.
    50. 50)
    51. 51)
      • 24. Mao, H., Abdel-Rahman, O., Batarseh, I.: ‘Active resonant tank to achieve zero-voltage-switching for non-isolated DC-DC converters with synchronous rectifiers’. IEEE Industrial Electronics Society, 2005, pp. 585591.
    52. 52)
    53. 53)
      • 7. Sugimura, H., Lee, H.-W., Eid, A.M., et al: ‘Series load resonant tank high frequency inverter with ZCS-PDM control scheme for induction-heated fixing roller’. IEEE Int. Conf. Industrial Technology, 2005, pp. 756761.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2017.0149
Loading

Related content

content/journals/10.1049/joe.2017.0149
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading