Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess New grounded immittance simulators employing a single CFCC

In this study, a number of new immittance simulators employing a single current follower current conveyor (CFCC) and three passive components are proposed. First, six new circuit configurations have been introduced which can simulate lossy immittances of different types using a single CFCC along with a canonical number of passive and active components. Subsequently, with a little modification in the hardware of the CFCC, three other new circuits have been introduced which can simulate a variety of lossless immittances without any component matching constraints or requirement of additional active elements. When the passive resistors are replaced with complementary metal–oxide–semiconductor (CMOS) voltage controlled resistors, electronic tunability of the simulated immittances is available in all the cases. Several application examples of some of the proposed simulated immittance circuits have been presented and their workability has been verified using PSPICE simulations based on CFCC implementable in 0.18 μm CMOS technology.

References

    1. 1)
    2. 2)
      • 59. Biolek, D., Senani, R., Biolkova, V., et al: ‘Active elements for analog signal processing: classification, review and new proposals’, Radioengineerning, 2008, 17, (4), pp. 1532.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 70. Singh, A.K., Kumar, P.: ‘A novel fully differential current mode universal filter’. IEEE Proc. 57th Int. Midwest Symp. on Circuits and Systems (MWSCAS), College Station, TX, 3–6 August 2014, pp. 579582.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 71. Kacar, F., Kuntman, H., Kuntman, A.: ‘Grounded inductance simulator topologies realization with single current differencing current conveyor’. IEEE Proc. European Conf. on Circuit Theory and Design (ECCTD), Trondheim, Norway, 24–26 August 2015, pp. 14.
    24. 24)
    25. 25)
      • 68. Koton, J., Sagbas, M., Herencsar, N., et al: ‘Novel floating general element simulators using CBTA’, Radioengineering, 2012, 21, (1), pp. 1119.
    26. 26)
    27. 27)
    28. 28)
      • 58. Prasad, D., Bhaskar, D.R., Singh, A.K.: ‘New grounded and floating simulated inductance circuits using current differencing transconductance amplifiers’, Radioengineering, 2010, 19, (1), pp. 194198.
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
      • 73. Siripruchyanun, M., Silapan, P., Jaikla, W.: ‘Realization of CMOS current controlled current conveyor transconductance amplifier (CCCCTA) and its applications’, Active Passive Electron. Devices J., 2009, 4, (1–2), pp. 3553.
    41. 41)
    42. 42)
      • 74. Schaumann, R., Xiao, H., Van Valkenburg, M.E.: ‘Analog filter design’ (Oxford University Press, 2011).
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
      • 42. Senani, R., Bhaskar, D.R., Singh, A.K., et al: ‘Current feedback operational amplifiers and their applications’ (Springer, 2013), ch. 3.
    54. 54)
    55. 55)
    56. 56)
      • 39. Kacar, F., Kuntman, H.: ‘CFOA-based lossless and lossy inductance simulators’, Radioengineering, 2011, 20, (3), pp. 627663.
    57. 57)
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
    64. 64)
    65. 65)
    66. 66)
      • 32. Koton, J., Metin, B., Herencsar, N., et al: ‘DCCII-based novel lossless grounded inductance simulators with no element matching constrains’, Radioengineering, 2014, 23, (1), pp. 532539.
    67. 67)
    68. 68)
    69. 69)
    70. 70)
    71. 71)
      • 27. Ibrahim, M.A., Minaei, S., Yuce, E., et al: ‘Lossy/lossless floating/grounded inductance simulation using one DDCC’, Radioengineering, 2012, 21, (1), pp. 310.
    72. 72)
    73. 73)
    74. 74)
      • 63. Guney, A., Kuntman, H.: ‘New floating inductance simulator employing a single ZC-VDTA and one grounded capacitor’. IEEE Proc. 9th Int. Conf. on Design and Technology of Integrated System in Nanoscale Era (DTIS), Greece, Santorini, 2014, pp. 12.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2017.0131
Loading

Related content

content/journals/10.1049/joe.2017.0131
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address