access icon openaccess Time efficient signed Vedic multiplier using redundant binary representation

This study presents a high-speed signed Vedic multiplier (SVM) architecture using redundant binary (RB) representation in Urdhva Tiryagbhyam (UT) sutra. This is the first ever effort towards extension of Vedic algorithms to the signed numbers. The proposed multiplier architecture solves the carry propagation issue in UT sutra, as carry free addition is possible in RB representation. The proposed design is coded in VHDL and synthesised in Xilinx ISE 14.4 of various FPGA devices. The proposed SVM architecture has better speed performances as compared with various state-of-the-art conventional as well as Vedic architectures.

Inspec keywords: multiplying circuits; field programmable gate arrays

Other keywords: SVM architecture; UT sutra; Xilinx ISE 14.4; Urdhva Tiryagbhyam sutra; carry free addition; redundant binary representation; Vedic algorithms; RB representation; signed numbers; FPGA devices; time efficient signed Vedic multiplier; carry propagation issue

Subjects: Logic and switching circuits; Logic circuits

References

    1. 1)
    2. 2)
      • 3. Wallace, C.S.: ‘A suggestion for a fast multiplier’, IEEE Trans. Electron. Comput., 1964, (1), pp. 1417.
    3. 3)
      • 19. Kodali, R.K., Boppana, L., Yenamachintala, S.S.: ‘FPGA implementation of vedic floating point multiplier’. Signal Processing, Informatics, Communication and Energy Systems (SPICES), 2015 IEEE Int. Conf. on IEEE, 2015, pp. 14.
    4. 4)
    5. 5)
      • 18. Saha, P., Banerjee, A., Bhattacharyya, P., et al: ‘High speed ASIC design of complex multiplier using Vedic mathematics’. ‘Students’ Technology Symp. (TechSym), 2011 IEEE IEEE, 2011, pp. 237241.
    6. 6)
      • 20. Kandasamy, W.B.V., Smarandache, F.: ‘Vedic Mathematics, ‘Vedic’ or ‘Mathematics’: A Fuzzy & Neutrosophic Analysis: A Fuzzy and Neutrosophic Analysis’ (Infinite Study, 2006).
    7. 7)
    8. 8)
      • 7. Tirtha, S.B.K., Agrawala, V.S., Agrawala, V.S.: ‘Vedic mathematics’ (Motilal Banarsidass Publ., 1992).
    9. 9)
    10. 10)
      • 23. Xilinx, V.-I.: ‘Platform FPGA User Guide'UG002 (V2. 1)2007, 28, pp. 1502.
    11. 11)
      • 24. UG070, U.G.: ‘Virtex-4 FPGA user guide’ (Xilinx Inc, 2008).
    12. 12)
      • 6. Besli, N., Deshmukh, R.G.: ‘A novel redundant binary signed-digit (RBSD) Booth's encoding’. SoutheastCon, 2002. Proc. IEEE IEEE, 2002, pp. 426431.
    13. 13)
    14. 14)
      • 12. Mehta, P., Gawali, D.: ‘Conventional versus Vedic mathematical method for hardware implementation of a multiplier’. Advances in Computing, Control, & Telecommunication Technologies, 2009. ACT'09. Int. Conf. on IEEE, 2009, pp. 640642.
    15. 15)
      • 1. Parhami, B.: ‘Computer arithmetic and hardware designs’ (Oxford University Press, 2000).
    16. 16)
      • 21. Avizienis, A.: ‘Signed-digit number representations for fast parallel arithmetic’, IRE Trans. Electron. Comput., 1961, (3), pp. 389400.
    17. 17)
    18. 18)
      • 17. Ramalatha, M., Dayalan, K.D., Dharani, P., et al: ‘High speed energy efficient ALU design using vedic multiplication techniques’. Advances in Computational Tools for Engineering Applications, 2009. ACTEA'09. Int. Conf. on IEEE, 2009, pp. 600603.
    19. 19)
      • 13. Barik, R.K., Pradhan, M.: ‘Area-time efficient square architecture’, AMSE J., Adv. D, 2015, 20, (1), pp. 2134.
    20. 20)
      • 4. Hu, J., Wang, L., Xu, T.: ‘A low-power adiabatic multiplier based on modified Booth algorithm’. 2007 Int. Symp. on Integrated Circuits IEEE, 2007, pp. 489492.
    21. 21)
    22. 22)
      • 22. Pedroni, V.A.: ‘Circuit design with VHDL’ (MIT press, 2004).
    23. 23)
    24. 24)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2016.0376
Loading

Related content

content/journals/10.1049/joe.2016.0376
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading