access icon openaccess Filtered local pattern descriptor for face recognition and infrared pedestrian detection

In recent decades, the local pattern descriptor has achieved tremendous success in the field of face recognition, pedestrian detection, and image texture analysis. This study presents a generic approach, called the filtered local pattern descriptor (FLPD), which expands the traditional local pattern descriptor (TLPD) by using multi-scale and multi-type filter banks. The FLPD encodes the local information of an image based on the convolutional sum of the sub-image blocks and the filter banks, instead of the original pixel values in the TLPD. This design can effectively increase the diversity of the TLPD feature extraction, thereby enhancing the ability of feature representation and its reliability. Two FLPD-based feature representation methods are proposed for the face image and the pedestrian image. To evaluate the performance of the proposed FLPD, extensive experiments on face recognition and infrared pedestrian detection are conducted using several benchmark image datasets. The experimental results illustrate that the FLPD has a significant advantage in the discrimination and stability of feature extraction, and is able to achieve a satisfactory accuracy in comparison with state-of-the-art methods. It is demonstrated that the FLPD is a powerful and convenient extension of the TLPD by filter banks, and suitable to be implemented as feature extraction into approaches to solve the binary or multi-class image classification problems.

Inspec keywords: pedestrians; infrared imaging; object detection; channel bank filters; image representation; face recognition; feature extraction

Other keywords: traditional local pattern descriptor; multitype filter banks; feature representation; multiscale filter banks; face recognition; FLPD; filtered local pattern descriptor; TLPD feature extraction; infrared pedestrian detection

Subjects: Filtering methods in signal processing; Image recognition; Computer vision and image processing techniques

References

    1. 1)
    2. 2)
    3. 3)
      • 11. Ojala, T., Pietikäinen, M., Mäenpää, T.: ‘Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns’. Computer Vision – ECCV 2000, Springer Berlin Heidelberg, 2000, pp. 404420.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 35. https://pdollar.github.io/toolbox/index.html.
    8. 8)
      • 2. Ojala, T., Pietikainen, M., Harwood, D.: ‘Performance evaluation of texture measures with classification based on Kullback discrimination of distributions’. IAPR Int. Conf. on Pattern Recognition, 1994. Vol. 1 – Conf. A: Computer Vision and Image Processing IEEE, 1994, vol. 1, pp. 582585.
    9. 9)
      • 27. Zhang, S., Benenson, R., Schiele, B.: ‘Filtered channel features for pedestrian detection’. IEEE Conf. on Computer Vision and Pattern Recognition IEEE Computer Society, 2015, pp. 17511760.
    10. 10)
    11. 11)
    12. 12)
      • 13. Tan, X., Triggs, B.: ‘Enhanced local texture feature sets for face recognition under difficult lighting conditions’, IEEE Trans. Image Process.(A Publication of the IEEE Signal Processing Society), 2010, 19, (6), pp. 168182.
    13. 13)
      • 37. Felzenszwalb, P.F., Girshick, R.B., Mcallester, D., et al: ‘Object detection with discriminatively trained part-based models’, IEEE Trans. Softw. Eng., 2010, 32, (9), pp. 16271645.
    14. 14)
    15. 15)
    16. 16)
      • 32. Nam, W., Dollár, P., Han, J.H.: ‘Local decorrelation for improved detection’, Adv. Neural Inf. Process. Syst., 2014, 1, pp. 424432.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 24. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. IEEE Conf. on Computer Vision and Pattern Recognition, 2013, pp. 886893.
    22. 22)
      • 16. Jabid, T., Kabir, M.H., Chae, O.: ‘Local Directional Pattern (LDP) for face recognition’, Int. J. Innov. Comput. Inf. Control, 2010, 8, (4), pp. 329330.
    23. 23)
    24. 24)
    25. 25)
      • 3. Casasent, D.P.: ‘Experiments with two industrial problems using texture classification based on feature distributions’. Proc Spie 2354, 1994.
    26. 26)
      • 30. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘ImageNet classification with deep convolutional neural networks’, Adv. Neural Inf. Process. Syst., 2012, 25, (2), p. 2012.
    27. 27)
    28. 28)
    29. 29)
      • 20. Sun, J., Fan, G., Wu, X.: ‘New local edge binary patterns for image retrieval’. IEEE Int. Conf. on Image Processing, 2013, pp. 40144018.
    30. 30)
      • 12. Zhang, W., Shan, S., Gao, W., et al: ‘Local Gabor Binary Pattern Histogram Sequence (LGBPHS): a novel non-statistical model for face representation and recognition’. Tenth IEEE Int. Conf. on Computer Vision IEEE Computer Society, 2005, pp. 786791.
    31. 31)
    32. 32)
      • 31. Girshick, R., Donahue, J., Darrell, T., et al: ‘Region-based convolutional networks for accurate object detection and segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 38, (1), pp. 11.
    33. 33)
      • 33. Zhang, S., Beneson, R., Omran, M., et al: ‘How Far are We from Solving Pedestrian Detection?’, 2016.
    34. 34)
      • 15. Liao, S., Chung, A.C.S.: ‘Face recognition by using elongated local binary patterns with average maximum distance gradient magnitude’. Computer Vision - ACCV 2007, Asian Conf. on Computer Vision, Proc. 2007, Tokyo, Japan, 18–22 November 2007, pp. 672679.
    35. 35)
      • 26. Varma, M., Zisserman, A.: ‘Texture classification: are filter banks necessary?’. IEEE Conf. on Computer Vision and Pattern Recognition, 2003, p. 691.
    36. 36)
    37. 37)
      • 34. http://portal.uc3m.es/portal/page/portal/dpto_ing_sistemas_automatica/investigacion/IntelligentSystemsLab/repository.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2016.0307
Loading

Related content

content/journals/10.1049/joe.2016.0307
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading