http://iet.metastore.ingenta.com
1887

access icon openaccess Robust and sparse canonical correlation analysis based L 2,p -norm

Loading full text...

Full text loading...

/deliver/fulltext/joe/2017/3/JOE.2016.0296.html;jsessionid=9ag31rh8sttcc.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2016.0296&mimeType=html&fmt=ahah

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 6. Nie, F., Huang, H., Cai, X., et al: ‘Efficient and robust feature selection via joint L2, 1-norms minimization’, Advances in Neural Information Processing Systems 23 (NIPS 2010), Vancouver, Canada, December2010, pp. 18131821.
    7. 7)
      • 7. Peng, H., Fan, Y.: ‘Direct l(2, p)-norm learning for feature selection’, arXiv preprint arXiv:1504.00430, 2015.
    8. 8)
      • 8. Wang, H., Nie, F., Huang, H.: ‘Robust and discriminative distance for multi-instance learning’. 2012 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 29192924.
    9. 9)
    10. 10)
    11. 11)
      • 11. Sun, L., Ji, S., Ye, J.: ‘A least squares formulation for canonical correlation analysis’. Proc. of the 25th Int. Conf. on Machine Learning, 2008, pp. 10241031.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2016.0296
Loading

Related content

content/journals/10.1049/joe.2016.0296
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address