Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess DC fault ride-through of MMCs for HVDC systems: a review

As the increasing penetration of modular multilevel converter (MMC)-based high-voltage direct current (HVDC) into bulky power transmission systems, the performance of MMC on dealing with DC faults, especially on temporary DC fault in overhead transmission lines, has been becoming more and more significant. A comprehensive overview of MMC on DC fault ride-through (FRT) capability is discussed. Compared with DC fault blocking capability considered as a passive DC FRT strategy focusing on isolating DC fault from AC sides, the DC FRT capability emphasises remaining converters continuous operating during DC faults to regulate and support the connected AC grids. The principle and prerequisite of MMC on DC FRT are analysed, and then improved MMC topologies with DC fault handling capability are summarised and a corresponding comparison among them is conducted. Finally, applications of MMC with DC FRT capability on HVDC systems and its relative control strategies are presented.

References

    1. 1)
    2. 2)
      • 55. Staudt, V., Jager, M.K., Rothstein, A., et al: ‘Short-circuit protection in DC ship grids based on MMC with full-bridge modules’. 2015 Int. Conf. on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), 2015, pp. 15.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 49. Siemens: ‘Power markets in transition – new HVDC solutions for the power grids of the future’, 2013.
    9. 9)
    10. 10)
      • 78. Kim, V.S.C., Jang, G., Lim, S., et al: ‘Fault behavior and protection of HVDC system’ (Wiley-IEEE Press, Singapore, 2009).
    11. 11)
      • 48. Xiaoqian, L., Wenhua, L., Qiang, S., et al: ‘An enhanced MMC topology with DC fault ride-through capability’. Industrial Electronics Society, IECON 2013 – 39th Annual Conf. of the IEEE, 2013, pp. 61826188.
    12. 12)
      • 36. Jiangchao, Q., Saeedifard, M., Rockhill, A., et al: ‘Hybrid design of modular multilevel converters for HVDC systems based on various submodule circuits’, IEEE Trans. Power Deliv., 2015, 30, pp. 385394.
    13. 13)
    14. 14)
      • 76. Foster, S., Lie, X., Fox, B.: ‘Control of an LCC HVDC system for connecting large offshore wind farms with special consideration of grid fault’. 2008 IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 18.
    15. 15)
      • 30. Sungmin, K., Shenghui, C., Seung-Ki, S.: ‘Parameter design of modular multilevel converter for DC fault ride-through capability in multi-terminal HVDC system’. 2014 16th European Conf. on Power Electronics and Applications (EPE'14-ECCE Europe), 2014, pp. 110.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 59. Nguyen, T.H., Lee, D.-C.: ‘A novel submodule topology of MMC for blocking DC-fault currents in HVDC transmission systems’. 2015 Ninth Int. Conf. on Power Electronics and ECCE Asia (ICPE-ECCE Asia), 2015, pp. 20572063.
    21. 21)
      • 28. Shenghui, C., Sungmin, K., Jae-Jung, J., et al: ‘Principle, control and comparison of modular multilevel converters (MMCs) with DC short circuit fault ride-through capability’. 2014 29th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), 2014, pp. 610616.
    22. 22)
    23. 23)
      • 39. Ming Kong, G.T., He, Z.: ‘A DC fault ride-through strategy for cell-hybrid modular multilevel converter based HVDC transmission systems’. Proc. of the CSEE, 2014, vol. 34, pp. 53435351.
    24. 24)
      • 44. Feldman, R., Watson, A.J., Clare, J.C., et al: ‘DC fault ride-through capability and STATCOM operation of a hybrid voltage source converter arrangement for HVDC power transmission and reactive power compensation’. Sixth IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2012), 2012, pp. 15.
    25. 25)
      • 31. Marquardt, R.: ‘Modular multilevel converter: an universal concept for HVDC-networks and extended DC-bus-applications’. 2010 Int. Power Electronics Conf. (IPEC), 2010, pp. 502507.
    26. 26)
    27. 27)
    28. 28)
      • 34. Rong, Z., Lie, X., Liangzhong, Y.: ‘An improved modular multilevel converter with DC fault blocking capability’. 2014 IEEE PES General Meeting Conf. & Exposition, 2014, pp. 15.
    29. 29)
    30. 30)
    31. 31)
      • 47. Ahmed, K.H., Aboushady, A.A.: ‘Modified half-bridge modular multilevel converter for HVDC systems with DC fault ride-through capability’. Industrial Electronics Society, IECON 2014 – 40th Annual Conf. of the IEEE, 2014, pp. 46764682.
    32. 32)
      • 14. Saeedifard, M., Iravani, R.: ‘Dynamic performance of a modular multilevel back-to-back HVDC system’. 2011 IEEE Power and Energy Society General Meeting, 2011, p. 1.
    33. 33)
      • 43. Mathew, E.C., Shukla, A.: ‘Modulation, control and capacitor voltage balancing of alternate arm modular multilevel converter with DC fault blocking capability’. 2014 29th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), 2014, pp. 33293336.
    34. 34)
    35. 35)
      • 27. Xu, J., Zhao, P., Zhao, C.: ‘Reliability analysis and redundancy configuration of MMC with hybrid sub-module topologies’, IEEE Trans. Power Electron., 2015, PP, p. 1.
    36. 36)
    37. 37)
    38. 38)
      • 29. Rong, Z., Lie, X., Liangzhong, Y., et al: ‘Precharging and DC fault ride-through of hybrid MMC-based HVDC systems’, IEEE Trans. Power Deliv., 2015, 30, pp. 12981306.
    39. 39)
      • 62. Yinglin, X., Zheng, X., Qingrui, T.: ‘Modulation and control for a new hybrid cascaded multilevel converter with DC blocking capability’, IEEE Trans. Power Deliv., 2012, 27, pp. 22272237.
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
      • 65. Yang, G., Bazargan, M., Lie, X., et al: ‘DC fault analysis of MMC based HVDC system for large offshore wind farm integration’. Second IET Renewable Power Generation Conf. (RPG 2013), 2013, pp. 14.
    45. 45)
    46. 46)
      • 38. Rong, Z., Lie, X., Liangzhong, Y., et al: ‘Design and operation of a hybrid modular multilevel converter’, IEEE Trans. Power Electron., 2015, 30, pp. 11371146.
    47. 47)
      • 54. Adam, G., Davidson, I.: ‘Robust and generic control of full-bridge modular multilevel converter high-voltage DC transmission systems’, IEEE Trans. Power Deliv., 2015, PP, p. 1.
    48. 48)
      • 52. Ilves, K., Norrga, S., Nee, H.P.: ‘On energy variations in modular multilevel converters with full-bridge submodules for AC–DC and AC–AC applications’. 2013 15th European Conf. on Power Electronics and Applications (EPE), 2013, pp. 110.
    49. 49)
    50. 50)
      • 25. Maozeng Lu, J.H., Xu, K., Lin, L., et al: ‘Zero DC voltage ride through of a hybrid modular multilevel converter – part II: analysis and suppression of electromagnetic transients’. RPG Conf., 2015.
    51. 51)
      • 17. Xiaojie, S., Zhiqiang, W., Tolbert, L.M., et al: ‘A comparison of phase disposition and phase shift PWM strategies for modular multilevel converters’. 2013 IEEE Energy Conversion Congress and Exposition (ECCE), 2013, pp. 40894096.
    52. 52)
      • 33. Adam, G.P., Ahmed, K.H., Williams, B.W.: ‘Mixed cells modular multilevel converter’. 2014 IEEE 23rd Int. Symp. on Industrial Electronics (ISIE), 2014, pp. 13901395.
    53. 53)
      • 32. Marquardt, R.: ‘Modular multilevel converter topologies with DC-short circuit current limitation’. 2011 IEEE Eighth Int. Conf. on Power Electronics and ECCE Asia (ICPE & ECCE), 2011, pp. 14251431.
    54. 54)
      • 5. Lie, X., Williams, B.W., Liangzhong, Y.: ‘Multi-terminal DC transmission systems for connecting large offshore wind farms’. Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE, 2008, pp. 17.
    55. 55)
      • 68. Meyer, C., Kowal, M., De Doncker, R.W.: ‘Circuit breaker concepts for future high-power DC-applications’. Industry Applications Conf., 2005 40th IAS Annual Meeting Conf. Record of the 2005, 2005, vol. 2, pp. 860866.
    56. 56)
    57. 57)
      • 69. Rong, Z., Lie, X., Liangzhong, Y.: ‘DC/DC converters based on hybrid MMC for HVDC grid interconnection’. 11th IET Int. Conf. on AC and DC Power Transmission, 2015, pp. 16.
    58. 58)
      • 24. Friedrich, K.: ‘Modern HVDC PLUS application of VSC in modular multilevel converter topology’. 2010 IEEE Int. Symp. on Industrial Electronics (ISIE), 2010, pp. 38073810.
    59. 59)
    60. 60)
      • 2. Ahmed, N., Haider, A., Van Hertem, D., et al: ‘Prospects and challenges of future HVDC SuperGrids with modular multilevel converters’. Proc. of the 2011–14th European Conf. on Power Electronics and Applications (EPE 2011), 2011, pp. 110.
    61. 61)
    62. 62)
    63. 63)
    64. 64)
    65. 65)
      • 70. Omran, A.M., Ahmed, K.H., Hamad, M.S., et al: ‘Interconnection between different DC technologies at multi-terminal HVDC network’. 2014 Int. Conf. on Renewable Energy Research and Application (ICRERA), 2014, pp. 295300.
    66. 66)
      • 50. Baruschka, L., Mertens, A.: ‘Comparison of cascaded H-bridge and modular multilevel converters for BESS application’. 2011 IEEE Energy Conversion Congress and Exposition (ECCE), 2011, pp. 909916.
    67. 67)
    68. 68)
      • 53. Kontos, E., Pinto, R.T., Bauer, P.: ‘Providing dc fault ride-through capability to H-bridge MMC-based HVDC networks’. 2015 Ninth Int. Conf. on Power Electronics and ECCE Asia (ICPE-ECCE Asia), 2015, pp. 15421551.
    69. 69)
      • 56. Heejin, K., Jaesik, K., Sangmin, K., et al: ‘DC fault protection for modular multilevel converter HVDC using asymmetrical unipolar full-bridge submodule’. 2015 Ninth Int. Conf. on Power Electronics and ECCE Asia (ICPE-ECCE Asia), 2015, pp. 10831089.
    70. 70)
      • 6. Ahmed, N., Norrga, S., Nee, H.P., et al: ‘HVDC SuperGrids with modular multilevel converters: the power transmission backbone of the future’. 2012 Ninth Int. Multi-Conf. on Systems, Signals and Devices (SSD), 2012, pp. 17.
    71. 71)
      • 72. Luth, T., Merlin, M.M.C., Green, T.C.: ‘Modular multilevel DC/DC converter architectures for HVDC taps’. 2014 16th European Conf. on Power Electronics and Applications (EPE'14-ECCE Europe), 2014, pp. 110.
    72. 72)
    73. 73)
    74. 74)
      • 21. Bucher, M.K., Walter, M.M., Pfeiffer, M., et al: ‘Options for ground fault clearance in HVDC offshore networks’. 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 28802887.
    75. 75)
    76. 76)
      • 37. Nami, A., Liwei, W., Dijkhuizen, F., et al: ‘Five level cross connected cell for cascaded converters’. 2013 15th European Conf. on Power Electronics and Applications (EPE), 2013, pp. 19.
    77. 77)
      • 80. Liu, W., Zhao, C., Guo, C.: ‘The control strategy for Hybrid HVDC using voltage margin control and voltage dependent current order limiter control’. Second IET Renewable Power Generation Conf. (RPG 2013), 2013, pp. 14.
    78. 78)
      • 46. Farr, E.M., Feldman, R., Watson, A.J., et al: ‘Alternate arm converter (AAC) operation under faulted AC-grid conditions’. Ninth IET Int. Conf. on power Electronics, Machines and Drives (PEMD 2014), 2014, pp. 16.
    79. 79)
      • 13. Lesnicar, A., Marquardt, R.: ‘An innovative modular multilevel converter topology suitable for a wide power range’. 2003 IEEE Power Tech Conf. Proc., Bologna, 2003, vol. 3, p. 6.
    80. 80)
    81. 81)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2016.0195
Loading

Related content

content/journals/10.1049/joe.2016.0195
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address