http://iet.metastore.ingenta.com
1887

access icon openaccess Defect-tolerance analysis of fundamental quantum-dot cellular automata devices

Loading full text...

Full text loading...

/deliver/fulltext/joe/2015/4/JOE.2014.0344.html;jsessionid=3lbc7neij7neh.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2014.0344&mimeType=html&fmt=ahah

References

    1. 1)
    2. 2)
      • 2. Das, K., De, D.: ‘A novel approach of and-or-inverter (AOI) gate design for QCA’. Int. Conf. on Computers and Devices for Communication, 2009, pp. 6467.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 8. Sen, B., Dalui, M., Sikdar, B.K.: ‘Introducing universal QCA logic gate for synthesizing symmetric functions with minimum wire-crossings’. Int. Conf. and Workshop on Emerging Trends in Technology, 2010, pp. 828833.
    9. 9)
      • 9. Dysart, T.J., Kogge, P.M., Lent, C.S., Liu, M.: ‘An analysis of missing cell defects in quantum-dot cellular automata’. IEEE Int. Workshop on Design and Test of Defect-Tolerant Nanoscale Architectures (NANOARCH), 2005.
    10. 10)
    11. 11)
      • 11. Dysart, T.J., Kogge, P.M.: ‘Organizing wires for reliability in magnetic QCA’, ACM J. Emerg. Technol. Comput. Syst. (JETC), 2009, 5, (4), p. 19.
    12. 12)
    13. 13)
      • 13. Dysart, T.J., Kogge, P.M.: ‘Strategy and prototype tool for doing fault modeling in a nano-technology’. Third IEEE Conf. on Nanotechnology, 2003, 1, pp. 356359.
    14. 14)
      • 14. Bhanja, S., Sribastava, S.: ‘A Bayesian computing model for QCAs’. Nanotechnology Conf., 2005.
    15. 15)
      • 15. Bhanja, S., Sarkar, S.: ‘Graphical probabilistic inference for ground state and near-ground state computing in QCA circuits’. Proc. of 2005 Fifth IEEE Conf. on Nanotechnology, 2005, pp. 290293.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 19. Huang, J., Momenzadeh, M., Tahoori, M.B., Lombardi, F.: ‘Defect characterization for scaling of QCA devices’. Proc. of the 19th IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems, 2004, pp. 3038.
    20. 20)
      • 20. Tahoori, M.B., Momenzadeh, M., Huang, J., Lombardi, F.: ‘Defects and fault characterization in quantum cellular automata’, Proc. Nanotechnol., 2004, 3, pp. 190193.
    21. 21)
      • 21. Tahoori, M.B., Momenzadeh, M., Huang, J., Lombardi, F.: ‘Defects and faults in quantum cellular automata at nano scale’. Proc. of 22nd IEEE on VLSI Test Symp., 2004, pp. 291296.
    22. 22)
      • 22. Momenzadeh, M., Tahoori, M.B., Huang, J., Lombardi, F.: ‘Quantum cellular automata new defects and faults for new devices’. Proc. of 18th Int. Parallel Distributed Processing Symp., 2004, vol. 207.
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 26. Srivastava, S.: ‘Probabilistic modeling of quantum-dot cellular automata’. PhD thesis, Department of Electrical Engineering College of Engineering, University of South Florida, 2008.
    27. 27)
      • 27. Farazkish, R., Sayedsalehi, S., Navi, K.: ‘Novel design for quantum dots cellular automata to obtain fault tolerant majority gate’, J. Nanotechnol., 2012, 2012. Article ID 943406, 7 pages, http://dx.doi.org/10.1155/2012/943406.
    28. 28)
      • 28. Das, K., De, D.: ‘QCA defect and fault analysis of diverse nanostructure for implementing logic gate’, Int. J. Recent Trends Eng. Technol., 2010, 3, (1), pp. 15.
    29. 29)
      • 29. Momenzadeh, M., Ottavi, M., Lombardi, F.: ‘Modeling QCA defects at molecular-level in combinational circuits’. 20th IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems, 2005, pp. 208216.
    30. 30)
    31. 31)
    32. 32)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2014.0344
Loading

Related content

content/journals/10.1049/joe.2014.0344
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address