Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Fabrication of micro-patterned titanium dioxide nanotubes thin film and its biocompatibility

In this study, in order to obtain a novel biomaterials surface which possesses the functions of an anticoagulant, inhibiting smooth muscle proliferation and pro-endothelialisation simultaneously, a micro-patterned titanium dioxide (TiO2)-nanotubes (P-TiO2-nanotubes) thin film was prepared on titanium (Ti) surface by photolithography combining with anodising method. The authors found that the P-TiO2-nanotubes could reduce platelet attachment and conformational change of fibrinogen (FGN) as well as promoting endothelial cells (ECs) growth compared with the TiO2-nanotubes. Notably, P-TiO2-nanotubes could significantly reduce smooth muscle cells (SMCs) proliferation compared with TiO2-nanotubes and TiO2, and the ECs and SMCs cultured on the P-TiO2-nanotubes thin film were elongated, which was suggested to be beneficial for maintaining the cell function. Therefore it is suggested that the P-TiO2-nanotubes thin film can contribute more to biocompatible functions of regulating and coordinating the behaviour of platelets, ECs and SMCs.

References

    1. 1)
      • 13. Li, J.A., Li, G.C., Zhang, K., et al: ‘Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface’, Appl. Surf. Sci., 2013, 273, pp. 2431.
    2. 2)
      • 11. Wang, Y., Wu, Y.C., Qin, Y.Q., et al: ‘Rapid anodic oxidation of highly ordered TiO2 nanotube arrays’, J. Alloys Compd., 2011, 509, pp. L157L160.
    3. 3)
      • 16. Li, G.C., Yang, P., Qin, W., Maitz, M.F., Zhou, S., Huang, N.: ‘The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization’, Biomaterials, 2011, 32, pp. 46914703.
    4. 4)
      • 21. Yang, Z.L., Tu, Q.F., Maitz, M.F., Zhou, S., Wang, J., Huang, N.: ‘Direct thrombin inhibitor-bivalirudin functionalized plasma polymerized allylamine coating for improved biocompatibility of vascular devices’, Biomaterials, 2012, 33, pp. 79597971.
    5. 5)
      • 9. Anderson, D.E.J., Hinds, M.T.: ‘Extracellular matrix production and regulation in micropatterned endothelial cells’, Biochem. Biophys. Res. Commun., 2012, 427, pp. 159164.
    6. 6)
      • 17. Li, J.A., Zhang, K., Yang, P., et al: ‘Research of smooth muscle cells response to fluid flow shear stress by hyaluronic acid micro-pattern on a titanium surface’, Exp. Cell Res., 2013, 319, pp. 26632672.
    7. 7)
      • 22. Yang, Z.L., Tu, Q.F., Wang, J., Huang, N.: ‘The role of heparin binding surfaces in the direction of endothelial and smooth muscle cell fate and re-endothelialization’, Biomaterials, 2012, 33, pp. 66156625.
    8. 8)
      • 12. Li, J.A., Zhang, K., Yang, P., et al: ‘Human vascular endothelial cell morphology and functional cytokine secretion influenced by different size of HA micro-pattern on titanium substrate’, Colloids Surf. B, Biointerfaces, 2013, 110, pp. 199207.
    9. 9)
      • 15. Zhou, Z., Chen, J., Xiang, L.J., et al: ‘Fabrication of 3D TiO2 micromesh on silicon surface and its effects on platelet adhesion’, Mater. Lett., 2014, 132, pp. 149152.
    10. 10)
      • 8. Park, J., Bauer, S., Schmuki, P., von der, M.K.: ‘Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces’, Nano Lett., 2009, 9, pp. 31573164.
    11. 11)
      • 14. Zhao, Y.C., Tu, Q.F., Wang, J., Huang, Q.J., Huang, N.: ‘Crystalline TiO2 grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom-transfer radical polymerization’, Appl. Surf. Sci., 2010, 257, pp. 15961601.
    12. 12)
      • 7. Peng, L.L., Eltgroth, M.L., LaTempa, T.J., Grimes, C.A., Desai, T.A.: ‘The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation’, Biomaterials, 2009, 30, pp. 12681272.
    13. 13)
      • 2. Abdal-hay, A., Mousa, H.M., Khan, A., Vanegas, P., Lim, J.H.: ‘TiO2 nanorods coated onto nylon 6 nanofibers using hydrothermal treatment with improved mechanical properties’, Colloids Surf. A, Physicochem. Eng. Aspects, 2014, 457, pp. 275281.
    14. 14)
      • 20. Li, G.C., Zhang, F.M., Liao, Y.Z., Yang, P., Huang, N.: ‘Coimmobilization of heparin/fibronectin mixture on titanium surfaces and their blood compatibility’, Colloids Surf. B, Biointerfaces, 2010, 81, pp. 255262.
    15. 15)
      • 6. Zhong, S., Luo, R.F., Wang, X., et al: ‘Effects of polydopamine functionalized titanium dioxide nanotubes on endothelial cell and smooth muscle cell’, Colloids Surf. B, Biointerfaces, 2014, 116, pp. 553560.
    16. 16)
      • 19. Li, J.A., Zhang, K., Chen, H.Q., et al: ‘A novel coating of type IV collagen and hyaluronic acid on stent material-titanium for promoting smooth muscle cell contractile phenotype’, Mater. Sci. Eng. C, 2014, 38, pp. 235243.
    17. 17)
      • 5. Li, J.A., Yang, P., Zhang, K., Ren, H.L., Huang, N.: ‘Preparation of SiO2/TiO2 and TiO2/TiO2 micropattern and their effects on platelet adhesion and endothelial cell regulation’, Nucl. Instrum. Methods Phys. Res. B, 2013, 307, pp. 575579.
    18. 18)
      • 10. Lei, L.J., Li, C.H., Yang, P., Huang, N.: ‘Photo-immobilized heparin micropatterns on Ti–O surface: preparation, characterization, and evaluation in vitro’, J. Mater. Sci., 2011, 46, pp. 67726782.
    19. 19)
      • 4. Collazos-Castro, J.E., Cruz, A.M., Carballo-Vila, M., et al: ‘Neural cell growth on TiO2 anatase nanostructured surfaces’, Thin Solid Films, 2009, 518, pp. 160170.
    20. 20)
      • 3. Zhang, X.H., Zheng, X., Cheng, Y., Li, G.H., Chen, X.P., Zheng, J.H.: ‘Formation of rutile fasciculate zone induced by sunlight irradiation at room temperature and its hemocompatibility’, Mater. Sci. Eng. C, 2013, 33, pp. 32893293.
    21. 21)
      • 1. Liu, J.X., Yang, D.Z., Shi, F., Cai, Y.J.: ‘Sol–gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement’, Thin Solid Films, 2003, 429, pp. 225230.
    22. 22)
      • 18. Li, J.A., Zhang, K., Xu, Y., et al: ‘A novel coculture model of HUVECs and HUASMCs by hyaluronic acid micropattern on titanium surface’, J. Biomed. Mater. Res. A, 2014, 102A, pp. 19501960.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2014.0274
Loading

Related content

content/journals/10.1049/joe.2014.0274
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address