access icon openaccess Ensemble unscented Kalman filter for state inference in continuous–discrete systems

The authors consider non-linear state filtering problem in continuous–discrete systems, where the system dynamics is modelled by a stochastic differential equation, and noisy measurements of the system are obtained at discrete time instances. A novel particle method is proposed based on sequential importance sampling. This approach uses a bank of the continuous–discrete unscented Kalman filters (CDUKFs) to obtain the importance proposal distribution, retaining the advantage of the CDUKF in continuous–discrete systems as well as the accuracy of particle filter in highly non-linear systems. Simulation results show that the algorithm outperforms some other benchmarks substantially in estimation accuracy.

Inspec keywords: differential equations; signal sampling; Kalman filters; discrete time filters; nonlinear filters; stochastic processes

Other keywords: discrete time instances; continuous-discrete systems; nonlinear state filtering problem; CDUKF; particle method; noisy measurements; state inference; sequential importance sampling; particle filter; continuous-discrete unscented Kalman filter; nonlinear systems; stochastic differential equation

Subjects: Filtering methods in signal processing; Other topics in statistics; Other topics in statistics; Mathematical analysis; Digital signal processing; Mathematical analysis

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 14. Wan, E.A., Van Der Merwe, R.: ‘The unscented Kalman filter’, in Haykin, S. (Ed.): ‘Kalman filtering and neural networks’ (Wiley, New York, 2001), pp. 221280.
    5. 5)
      • 5. VanTrees, H.L.: ‘Detection, estimation, and modulation theory part II’ (John Wiley Sons, New York, 1971).
    6. 6)
      • 3. Stengel, R.F.: ‘Optimal control and estimation’ (Dover Publications, Inc., New York,1994).
    7. 7)
      • 7. Gelb, A. (Ed.): ‘Applied optimal estimation’ (The MIT Press, Cambridge, 1974).
    8. 8)
      • 6. Jazwinski, A.H.: ‘Stochastic processes and filtering theory’ (Academic Press, New York, 1970).
    9. 9)
      • 2. Grewal, M.S., Weill, L.R., Andrews, A.P.: ‘Global positioning systems, inertial navigation and integration’ (Wiley Inter science, New York, 2001).
    10. 10)
      • 12. Julier, S.J., Uhlmann, J.K.: ‘New extension of the Kalman filter to nonlinear systems’. AeroSense'97, 1997, pp. 182193.
    11. 11)
      • 8. Grewal, M.S., Andrews, A.P.: ‘Kalman filtering, theory and practice using MATLAB’ (Wiley Inter science, New York, 2001).
    12. 12)
      • 13. Wan, E.A., Van Der Merwe, R.: ‘The unscented Kalman filter for nonlinear estimation’. IEEE Adaptive Systems for Signal Processing, Communications, and Control Symp. , 2000, pp. 153158.
    13. 13)
    14. 14)
      • 1. Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: ‘Estimation with applications to tracking and navigation’ (Wiley Inter science, New York, 2001).
    15. 15)
      • 17. Kloeden, P.E., Platen, E.: ‘Numerical solution to stochastic differential equations’ (Springer, 1999).
    16. 16)
      • 4. VanTrees, H.L.: ‘Detection, estimation, and modulation theory part I’ (John Wiley Sons, New York, 1968).
    17. 17)
    18. 18)
      • 10. Tommi, S., Simo, S.: ‘Application of Girsanov theorem to particle filtering of discretely observed continuous-time non-linear systems’, Bayesian Anal., 2008, 3, (3), pp. 555584.
    19. 19)
    20. 20)
      • 15. Van der Merwe, R., Doucet, A., de Freitas, N., Wan, E.: ‘The unscented particle filter’. Technical Report, CUED/F-INFENG/TR 380, 2000.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2014.0076
Loading

Related content

content/journals/10.1049/joe.2014.0076
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading