http://iet.metastore.ingenta.com
1887

access icon openaccess CMOS time-to-digital converters for mixed-mode signal processing

Loading full text...

Full text loading...

/deliver/fulltext/joe/2014/4/JOE.2014.0044.html;jsessionid=8sth2yj80kdu.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2014.0044&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Yoshiaki, T., Takeshi, A.: ‘Simple voltage-to-time converter with high linearity’, IEEE Trans. Instrum. Meas., 1971, 20, (2), pp. 120122.
    2. 2)
    3. 3)
      • 3. Park, K., Park, J.: ‘20 ps resolution time-to-digital converter for digital storage oscillator’. Proc. IEEE Nuclear Science Symp., 1998, vol. 2, pp. 876881.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 8. Park, M., Perrott, M.: ‘A single-slope 80 Ms/s ADC using two-step time-to-digital conversion’, Proc. IEEE Int. Symp. Circuits Syst., 2009, pp. 11251128.
    9. 9)
      • 9. Yousefzadeh, B., Sharifkhani, M.: ‘An audio band low voltage CT-ΔΣ modulator with VCO-based quantizer’. Proc. IEEE Int. Conf. Electronics, Circuits Systems, 2011, pp. 232235.
    10. 10)
    11. 11)
    12. 12)
      • 12. Guttman, M., Roberts, G.: ‘K-locked-loop and its application in time mode ADC’. Proc. IEEE Int. Symp. Integrated Circuits, 2009, pp. 101104.
    13. 13)
      • 13. Ravinuthula, V.: ‘Time-mode circuits for analog computations’. PhD dissertation, University of Florida, 2006.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 18. Ghaffari, A., Abrishamifar, A.: ‘A novel wide-range delay cell for DLLs’. Proc. IEEE Int. Electrical and Computer Engineering Conf., 2006, pp. 497500.
    19. 19)
      • 19. Hong, J., Kim, S., Liu, J., et al: ‘A 0.004 mm2 250 μW ΔΣ TDC with time-difference accumulator and a 0.012 mm2 2.5 mW bang-bang digital PLL using PRNG for low-power SoC applications’. IEEE Int. Conf. Solid-State Circuits Digest of Technical Papers, 2012, pp. 240242.
    20. 20)
      • 20. Rashdan, M., Yousif, A., Haslett, J., Maundy, B.: ‘A new time-based architecture for serial communication links’. Proc. IEEE Int. Conf. Electronics, Circuits, Systems, 2009, pp. 531534.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 25. Henzler, S.: ‘Time-to-digital converters’ (Springer, New York, 2010).
    26. 26)
      • 26. Rahkonen, T., Kostamovaara, J., Saynajakangas, S.: ‘Time interval measurements using integrated tapped CMOS delay lines’. Proc. IEEE Mid-West Symp. Circuits Systems, 1990, pp. 201205.
    27. 27)
      • 27. Aria, Y., Matsumura, T., Endo, K.: ‘A CMOS four-channel × 1 K memory LSI with 1-ns/b resolution’, IEEE Trans. Circuits Syst. II, 1992, 27, (3), pp. 359364.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • 31. Levine, P., Roberts, G.: ‘A calibration technique for a high-resolution flash time-to-digital converter’. Proc. IEEE Int. Symp. Circuits Systems, 2004, vol. 1, pp. 253256.
    32. 32)
    33. 33)
      • 33. Gutnik, V., Chandrakasan, A.: ‘On-chip picosecond time measurement’. Symp. VLSI Circuits Digest of Technical Papers, 2000, pp. 5253.
    34. 34)
      • 34. Minas, N., Kinniment, D., Heron, K., Russell, G.: ‘A high resolution flash time-to-digital converter taking into account process variability’. Proc. IEEE Int. Symp. Asynchronous Circuits and Systems, 2007, pp. 163174.
    35. 35)
      • 35. Yamaguchi, T., Komatsu, S., Abbas, M., Asada, K., Maikhanh, N., Tandon, J.: ‘A CMOS flash TDC with 0.84-1.3 ps resolution using standard cells’. Proc. IEEE RFIC, 2012, pp. 527530.
    36. 36)
      • 36. Zanuso, M., Levantino, S., Puggelli, A., Samori, C., LacaitA, A.: ‘Time-to-digital converter with 3-ps resolution and digital linearization algorithm’. Proc. IEEE ESSCIRC, 2010, pp. 262265.
    37. 37)
      • 37. Yao, C., Jonsson, F., Chen, J., Zheng, L.: ‘A high-resolution time-to-digital converter based on parallel delay elements’. Proc. IEEE Int. Symp. Circuits Systems, 2012, pp. 31583161.
    38. 38)
    39. 39)
      • 39. Knotts, T., Chu, D., Sommer, J.: ‘A 500 MHz time digitizer IC with 15.625 ps resolution’. IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, 1994, pp. 5859.
    40. 40)
      • 40. Henzler, S., Koeppe, S., Kamp, W., Schmitt-Landsiedel, D.: ‘90 nm 4.7 ps-resolution 0.7-LSB single-shot precision and 19 pJ-per-shot local passive interpolation time-to-digital converter with on-chip characterization’. IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, 2008, pp. 548635.
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
      • 45. Liu, Y., Vollenbruch, U., Chen, Y., et al: ‘Multi-stage pulse shrinking time-to-digital converter for time interval measurements’. Proc. European Conf. Wireless Technology, 2007, pp. 347350.
    46. 46)
      • 46. Liu, Y., Vollenbruch, U., Chen, Y., et al: ‘A 6 ps resolution pulse shrinking time-to-digital converter as phase detector in multi-mode transceiver’. Proc. IEEE Radio and Wireless Symp., 2008, pp. 163166.
    47. 47)
      • 47. Mantyniemi, A., Rahkonen, T., Kostamovaara, J.: ‘A high-resolution digital CMOS time-to-digital converter based on nested delay locked loops’. Proc. IEEE Int. Symp. Circuits Systems, 1999, vol. 2, pp. 537540.
    48. 48)
      • 48. Huang, H., Wu, S., Tsai, Y.: ‘A new cycle-time-to-digital converter with two level conversion scheme’. Proc. IEEE Int. Symp. Circuits Systems, 2007, pp. 21602163.
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
      • 53. Kurko, B.: ‘A picosecond resolution time digitizer for laser ranging’, IEEE Trans. Nucl. Sci., 1978, NS-25, (1), pp. 7580.
    54. 54)
    55. 55)
    56. 56)
      • 57. Kwon, H., Lee, J., Sim, J., Park, H.: ‘A high-gain wide-input-range time amplifier with an open-loop architecture and a gain equal to current bias ratio’. Proc. IEEE Asian Solid-State Circuits Conf., 2011, pp. 325328.
    57. 57)
    58. 58)
    59. 59)
      • 60. Oulmane, M., Roberts, G.: ‘CMOS time amplifier for femto-second resolution timing measurement’. Proc. IEEE Int. Symp. Circuits Systems, 2004, pp. 509512.
    60. 60)
      • 61. Tong, B., Yan, W., Zhou, X.: ‘A constant-gain time-amplifier with digital self-calibration’. Proc. IEEE Int. ASIC Conf., 2009, pp. 11331136.
    61. 61)
    62. 62)
    63. 63)
    64. 64)
      • 65. Lin, C., Syrzycki, M.: ‘Pico-second time interval amplification’. Proc. IEEE Int. SoC Design Conf., 2010, pp. 201204.
    65. 65)
      • 66. Nakura, T., Mandai, S., Ikeda, M., Asada, K.: ‘Time difference amplifier using closed-loop gain control’. Symp. VLSI Circuits Digest of Technical Papers, 2009, pp. 208209.
    66. 66)
      • 67. Mandai, S., Nakura, T., Ikeda, M., Asada, K.: ‘Cascaded time difference amplifier using differential logic delay cell’. Proc. Int. SoC Design Conf., 2009, pp. 299304.
    67. 67)
    68. 68)
      • 69. Lee, S., Seo, Y., Park, H., Sim, J.: ‘A 1 GHz ADPLL with a 125 ps minimum-resolution sub-exponent TDC in 0.18 μm CMOS’, IEEE J. Solid-State Circuits, 2010, 45, (12), pp. 28272881.
    69. 69)
    70. 70)
    71. 71)
    72. 72)
      • 73. Li, G., Chou, H.: ‘A high resolution time-to-digital converter using two-level vernier delay line technique’. Proc. IEEE Nuclear Science Symp. Conf. Record, 2007, pp. 276280.
    73. 73)
    74. 74)
      • 75. Nagaraj, G., Miller, S., Stengel, B., et al: ‘A self-calibrating sub-picosecond resolution digital-to-time converter’. Proc. IEEE Int. Microwave Symp., 2007, pp. 22012204.
    75. 75)
      • 76. Choi, Y., Yoo, S., Yoo, H.: ‘A full digital polar transmitter using a digital-to-time converter for high data rate system’. Proc. IEEE Int. Symp. Radio-Frequency Integration Technology, 2009, pp. 5659.
    76. 76)
      • 77. Al-Ahdab, S., Mantyniemi, A., Kostamovaara, J.: ‘A 12-bit digital-to-time converter (DTC) for time-to-digital converter (TDC) and other time domain signal processing applications’. Proc. IEEE NORCHIP, 2010, pp. 14.
    77. 77)
      • 78. Roberts, G., Ali-Bakhshian, M.: ‘A brief introduction to time-to-digital and digital-to-time converters’, IEEE J. Solid-State Circuits, 2010, 57, (3), pp. 153157.
    78. 78)
      • 79. Li, S., Salthouse, C.: ‘Digital-to-time converter for fluorescence lifetime imaging’. Proc. IEEE Int. Instrumentation and Measurement Technology Conf., 2012, pp. 894897.
    79. 79)
      • 80. Seo, Y., Kim, J., Park, H., Sim, J.: ‘A 0.63 ps resolution, 11 b pipeline TDC in 0.13 μm CMOS’. Symp. VLSI Circuits Digest of Technical Papers, 2012, pp. 152153.
    80. 80)
    81. 81)
      • 82. Kim, K., Yu, W., Cho, S.: ‘A 9b 1.12 ps resolution 2.5b/stage pipelined time-to-digital converter in 65 nm CMOS using time-register’. Symp. VLSI Circuits Digest of Technical Papers, 2013, pp. 136137.
    82. 82)
    83. 83)
      • 84. Seo, Y., Kim, J., Park, H., Sim, J.: ‘A 0.63 ps resolution 11 b pipeline TDC in 0.13 μm CMOS’. Symp. VLSI Circuits Digest of Technical Papers, 2011, pp. 152153.
    84. 84)
    85. 85)
      • 86. Schreier, R., Temes, G.: ‘Understanding delta–sigma data converters’ (John Wiley & Sons, Hoboken, NJ, 2005).
    86. 86)
      • 87. Elshazly, A., Rao, S., Young, B., Hanumolu, P.: ‘A 13b 315 fs,rms 2 mW 500 MS/s 1 MHz bandwidth highly digital time-to-digital converter using switched ring oscillators’. Int. Solid-State Circuits Conf. Digest of Technical Papers, 2012, pp. 464465.
    87. 87)
      • 88. Konishi, T., Okumo, K., Izumi, S., Yoshimoto, M., Kawaguchi, H.: ‘A 61 dB SNDR 700 μm second-order all-digital TDC with low-jitter frequency shift oscillator and dynamic flipflops’. Symp. VLSI Circuits Digest of Technical Papers, 2012, pp. 190191.
    88. 88)
      • 89. Hwang, K., Kim, L.: ‘An area efficient asynchronous gated ring oscillator TDC with minimum GRO stages’. Proc. IEEE Int. Symp. Circuits Systems, 2010, pp. 39733976.
    89. 89)
      • 90. Konishi, T., Okumo, K., Izumi, S., Yoshimoto, M., Kawaguchi, H.: ‘A 51 dB SNDR DCO-based TDC using two-stage second-order noise shaping’. Proc. IEEE Int. Symp. Circuits Systems, 2012, pp. 31703173.
    90. 90)
      • 91. Lu, P., Wu, Y., Andreani, P.: ‘A 90 nm CMOS digital PLL based on vernier-gated-ring-oscillator time-to-digital converter’. Proc. IEEE Int. Symp. Circuits Systems, 2012, pp. 25932596.
    91. 91)
    92. 92)
      • 93. Lu, P., Andreani, P., Liscidini, A.: ‘A 2-D GRO vernier time-to-digital converter with large input range and small latency’. Proc. IEEE RFIC, 2013, pp. 151154.
    93. 93)
      • 94. Chung, S., Hwang, K., Lee, W., Kim, L.: ‘A high resolution metastability-independent two-step gated ring oscillator TDC with enhanced noise shaping’. Proc. IEEE Int. Symp. Circuits Systems, 2010, pp. 13001303.
    94. 94)
      • 95. Cao, Y., Leroux, P., Cock, W.D., Steyaert, M.: ‘A 0.7 mW 11b 1-1-1 MASH ΔΣ time-to-digital converter’. IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, 2011, pp. 480481.
    95. 95)
      • 96. Cao, Y., Leroux, P., Cock, W.D., Steyaert, M.: ‘A 0.7 mW 13b temperature-stable MASH ΔΣ TDC with delay-line assisted calibration’. Proc. IEEE Asian Solid-State Circuits Conf., 2011, pp. 361364.
    96. 96)
    97. 97)
    98. 98)
      • 99. Yuan, F.: ‘CMOS circuits for passive wireless microsystems’ (Springer, New York, 2010).
    99. 99)
      • 100. Konishi, T., Okumo, K., Izumi, S., Yoshimoto, M., Kawaguchi, H.: ‘A 40-nm 640-μm2 45-dB opampless all-digital second-order MASH ΔΣ ADC’. Proc. IEEE Int. Symp. Circuits Systems, 2011, pp. 518521.
    100. 100)
      • 101. Okuno, K., Konishi, T., Izumi, S., Yoshimoto, M., Kawaguchi, H.: ‘A 62 dB SNDR second-order gated ring oscillator TDC with two-stage dynamic D-type flipflips a a quantization noise propagator’. Proc. IEEE NEWCAS, 2012, pp. 289292.
    101. 101)
      • 102. Gande, M., Maghari, N., Oh, T., Moon, U.: ‘A 71 dB dynamic range third-order ΔΣ TDC using charge-pump’. Symp. VLSI Circuits Digest of Technical Papers, 2012, pp. 168169.
    102. 102)
      • 103. Kim, S.: ‘Time domain algebraic operation circuits for high performance mixed-mode system’. MS thesis, Korean Advanced Institute of Science and Technology, 2010.
    103. 103)
      • 104. Wismar, U., Wisland, D., Andreani, P.: ‘A 0.2 V 0.44 μW 20 kHz analog to digital ΔΣ modulator with 57 fJ/conversion FoM’. Proc. IEEE European Solid-State Circuits Conf., 2006, pp. 187190.
    104. 104)
    105. 105)
    106. 106)
    107. 107)
      • 108. Rao, S., Young, B., Elshazly, A., Yin, W., Sasidhar, N., Hanumolu, P.: ‘A 71 dB SFDR open loop VCO-based ADC using 2-level PWM modulation’. Symp. VLSI Circuits Digest of Technical Papers, 2011, pp. 270271.
    108. 108)
      • 109. Ng, A., Zheng, S., Luong, H.: ‘A 4.1 GHz-6.5 GHz all-digital frequency synthesizer with a 2nd-order noise-shaping TDC and a transformer-coupled QVCO’. Proc. IEEE ESSCIRC, 2012, pp. 189192.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2014.0044
Loading

Related content

content/journals/10.1049/joe.2014.0044
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address