access icon openaccess Low-power adiabatic 9T static random access memory

In this paper, the authors propose a novel static random access memory (SRAM) that employs the adiabatic logic principle. To reduce energy dissipation, the proposed adiabatic SRAM is driven by two trapezoidal-wave pulses. The cell structure of the proposed SRAM has two high-value resistors based on a p-type metal-oxide semiconductor transistor, a cross-coupled n-type metal-oxide semiconductor (NMOS) pair and an NMOS switch to reduce the short-circuit current. The inclusion of a transmission-gate controlled by a write word line signal allows the proposed circuit to operate as an adiabatic SRAM during data writing. Simulation results show that the energy dissipation of the proposed SRAM is lower than that of a conventional adiabatic SRAM.

Inspec keywords: low-power electronics; SRAM chips; short-circuit currents; MOSFET

Other keywords: energy dissipation; write word line signal; low-power adiabatic static random access memory; NMOS switch; cell structure; cross-coupled n-type metal-oxide semiconductor; low-power adiabatic 9T SRAM; adiabatic logic principle; data writing; p-type metal-oxide semiconductor transistor; short-circuit current; trapezoidal-wave pulses

Subjects: Memory circuits; Semiconductor storage; Insulated gate field effect transistors

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 19. Nakata, S., Kusumoto, T., Miyama, M., Matsuda, Y.: ‘Adiabatic SRAM with a large margin of VT variation by controlling the cell-power-line and word-line voltage’. Proc. IEEE Int. Symp. Circuits and Systems, Taipei, Taiwan, May 2009, pp. 393396.
    12. 12)
      • 13. Upadhyay, S., Mishra, R.A., Nagaria, R.K., Singh, S.P.: ‘DFAL: diode-free adiabatic logic circuits’, ISRN Electronics, 2013, Article ID 673601, pp. 12, doi: 10.1155/2013/673601.
    13. 13)
      • 16. Kim, J., Ziesler, C.H., Papaefthymiou, M.C.: ‘Energy recovering static memory’. Proc. ISLPED 2002, Monterey, CA, August 2002, pp. 9297.
    14. 14)
    15. 15)
    16. 16)
      • 3. Younis, S.G., Knight, T.G.: ‘Asymptotically zero energy split-level charge recovery logic’. Proc. IWLPD ’94, pp. 177182.
    17. 17)
      • 14. Hu, J., Liu, B.: ‘Designs of 2P-2P2N energy recovery logic circuits’, J. Appl. Sci., Eng. Technol., 2013, 5, (21), pp. 49774982.
    18. 18)
      • 10. Takahashi, Y., Fukuta, Y., Sekine, T., Yokoyama, M.: ‘2PADCL: two phase drive adiabatic dynamic CMOS logic’. Proc. IEEE Asia-pacific Congress Circuits and Systems, Singapore, December 2006, pp. 14861489.
    19. 19)
      • 17. Zhang, S., Hu, J., Zhou, D.: ‘A low-power adiabatic content-addressable memory’. Proc. IEEE Midwest Symp. Circuits and Systems, Montreal, Canada, August 2007, pp. 15483746.
    20. 20)
    21. 21)
      • 6. Kim, S., Papaefthymiou, M.C.: ‘True single-phase energy-recovering logic for low-power, high-speed VLSI’. Proc. IEEE Int. Symp. Low-Power Electronics and Design, Monterey, CA, August 1998, pp. 167172.
    22. 22)
    23. 23)
    24. 24)
      • 20. Chen, J., Vasudevan, D., Popovici, E., Schellekenst, M., Gillen, P.: ‘Design and analysis of a novel 8T SRAM cell for adiabatic and non-adiabatic operations’. Proc. IEEE Int. Conf. Electronic Circuits and Systems, Athens, Greek, December 2010, pp. 434437.
    25. 25)
    26. 26)
    27. 27)
      • 1. Svensson, L.J., Koller, J.G.: ‘Adiabatic charging without inductors’. Proc. IEEE Int. Workshop Low Power Design (IWLPD), Napa Valley, CA, April 1994, pp. 159164.
    28. 28)
    29. 29)
      • 15. Somasekhar, D., Yibin, Y., Roy, K.: ‘An energy recovery static RAM memory core’. Proc. IEEE Symp. Low Power Electronics, San Jose, CA, October 1995, pp. 6263.
    30. 30)
    31. 31)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2014.0009
Loading

Related content

content/journals/10.1049/joe.2014.0009
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading