Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Collection probability with discrete random signal-to-interference power ratios in multiple interferences for electronic intelligence receivers

In certain applications, signal transmit power is adjusted in discrete levels. Moreover, interference powers themselves can be discretely random. For electronic intelligence applications, the authors refer to the signal to be collected as signal of interest (SoI). Thus, for a passive receiver, the resulting instantaneous SoI-to-interference power ratio (SIR) in multiple interferences is a discrete random variable. This means signal detection or collection is not guaranteed. They proposed collection probability (CP) as a metric when the SIR is random. In this study, the authors evaluate CP probabilistically and show CP against SIR threshold degradation and/or improvement as a function of increasing number of interferences, increasing signal power range and increasing distribution gain.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 11. Aslam, N., Robertson, W., Phillips, W.: ‘Performance analysis of WSN clustering algorithm with discrete power control’, IPSI Trans. Internet Res., 2009, 5, pp. 1015.
    8. 8)
      • 2. Wiley, R.: ‘ELINT, the interception and analysis of radar signals’ (Artech House, 2006).
    9. 9)
      • 24. Helstrom, C.W.: ‘Probability and stochastic processes for engineers’ (MacMillan, 1991, 2nd edn.).
    10. 10)
      • 3. Govoni, M., Li, H., Kosinski, J.: ‘Low probability of interception of an advanced noise radar waveform with linear-FM’, IEEE Trans. Aerosp. Electron. Syst., 2013, 2, pp. 13511356.
    11. 11)
      • 1. Van Trees, H.: ‘Detection, estimation, and modulation theory’ (Wiley, New York, 1968), vol. I.
    12. 12)
      • 15. Dai, Y., Chen, T., Chen, X., Lin, J.: ‘A novel DC-50 GHz variable attenuator’. Proc. ICMMT, 2002.
    13. 13)
      • 10. Goodman, D., Mandayam, N.: ‘Network assisted power control for wireless data’. Proc. Vehicular Technology Conf., Rhodes, Greece, May 2001.
    14. 14)
      • 16. Poitrenaud, N., Lefebvre, B., Tranchant, S., Camiade, M.: ‘A novel 5–30 GHz voltage controlled variable attenuator with high linearity in a low cost SMD compact package’. Proc. European Microwave Integrated Circuits Conf., 2006.
    15. 15)
      • 12. Aslam, N., Robertson, W., Phillips, W.: ‘Clustering with discrete power control in wireless networks’. Third Int. Conf. Sensor Technologies and Applications, Athens, Greece, June 2009.
    16. 16)
    17. 17)
      • 18. Self, A., Smith, B.: ‘Intercept time and its prediction’. Proc. IEE Communications, Radar, and Signal Processing, July 1985, vol. 132, pp. 215220.
    18. 18)
      • 4. Pozar, D.: ‘Microwave and RF design of wireless systems’ (Wiley, 2000).
    19. 19)
      • 17. Pace, P.: ‘Detecting and classifying low probability of intercept radar’ (Artech House, 2009, 2nd edn.).
    20. 20)
    21. 21)
      • 26. Oppenheim, A.V., Willsky, A.S., Nawab, S.H.: ‘Signals and systems’ (Prentice-Hall, 1997, 2nd edn.).
    22. 22)
      • 22. Ha, T.T.: ‘Theory and design of digital communication systems’ (Cambridge University Press, UK, 2011).
    23. 23)
      • 19. Goldsmith, A.: ‘Wireless communications’ (Cambridge University Press, UK, 2005).
    24. 24)
      • 8. Hughes, R., Easter, G.: ‘Automatic gain control – AGC electronics with radio, video and radar applications’ (Wexford College Press, 2007, 2nd edn.).
    25. 25)
      • 5. Dentrea, C.: ‘Modern communications receiver design and technology’ (Artech House, 2010).
    26. 26)
      • 6. Hughes, R.: ‘Analog automatic control loops in radar and EW’ (Artech House, 1988).
    27. 27)
    28. 28)
      • 23. Papoulis, A.: ‘Probability, random variables, and stochastic processes’ (McGraw-Hill, 1991, 3rd edn.).
    29. 29)
      • 25. Ludeman, L.C.: ‘Fundamentals of digital signal processing’ (Wiley, 1986).
    30. 30)
      • 7. Perez, J., Pueyo, S., Lopez, B.: ‘Automatic gain control: techniques and architectures for RF receivers (Analog Circuits and Signal Processing)’ (Springer, 2011).
    31. 31)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2013.0035
Loading

Related content

content/journals/10.1049/joe.2013.0035
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address