© The Institution of Engineering and Technology
The problem of ℋ_{∞} model reduction for twodimensional (2D) discrete systems with delay in state is considered. The mathematical model of 2D systems is established on the basis of the wellknown Fornasini–Marchesini local statespace. First, conditions are established to guarantee the asymptotic stability and a prescribed noise attenuation level in the ℋ_{∞} sense for the underlying system. For a given stable system, attention is focused on the construction of a reducedorder model, which approximates the original system well in an ℋ_{∞} norm sense. Sufficient conditions are proposed for the existence of admissible reducedorder solutions. Since these obtained conditions are not expressed as strict linear matrix inequalities (LMIs), the cone complementary linearisation method is exploited to cast them into sequential minimisation problems subject to LMI constraints, which can be readily solved using standard numerical software. These obtained results are further extended to more general cases whose system states contain multiple delays. Two numerical examples are provided to demonstrate the effectiveness of the proposed techniques.
References


1)

G.J. Lastman
.
Reducedorder aggregated models for bilinear timeinvariant dynamical systems.
IEEE Trans. Autom. Control
,
359 
361

2)

B. Moore
.
Principal component analysis in linear systems: controllability, observability, and model reduction.
IEEE Trans. Automat. Control
,
5 ,
17 
31

3)

K. Glover
.
All optimal Hankelnorm approximations of linear multivariable systems and their L∞error bounds.
Int. J. Control
,
6 ,
1115 
1193

4)

C. Du ,
L. Xie ,
Y.C. Soh
.
H∞ reducedorder approximation of 2D digital filters.
IEEE Trans. Circuits Syst. I
,
6 ,
688 
698

5)

K.M. Grigoriadis
.
Optimal H∞ model reduction via linear matrix inequalities: continuous and discretetime cases.
Syst. Control Lett.
,
321 
333

6)

S. Xu ,
J. Lam ,
S. Huang ,
C. Yang
.
H∞ model reduction for linear timedelay systems: continuoustime case.
Int. J. Control
,
11 ,
1062 
1074

7)

H. Gao ,
J. Lam ,
S. Xu ,
C. Wang
.
Stabilization and H∞ control of twodimensional Markovian jump systems.
IMA J. Math. Control Info.
,
377 
392

8)

W.S. Lu ,
A. Antoniou
.
(1992)
Twodimensional digital filters.

9)

T. Hinamoto
.
Stability of 2D discrete systems described by the Fornasini–Marchesini second model.
IEEE Trans. Circuits Syst. I
,
3 ,
254 
257

10)

W.S. Lu
.
On a Lyapunov approach to stability analysis of 2D digital filters.
IEEE Trans. Circuits Syst. I
,
10 ,
665 
669

11)

C. Du ,
L. Xie ,
Y.C. Soh
.
ℋ∞ filtering of 2D discrete systems.
IEEE Trans. Signal Process.
,
6 ,
1760 
1768

12)

L. Xie ,
C. Du ,
Y.C. Soh ,
C. Zhang
.
H∞ and robust control of 2D systems in FM second model.
Multidimens. Syst. Signal Process.
,
256 
287

13)

H. Gao ,
J. Lam ,
C. Wang ,
S. Xu
.
ℋ∞ model reduction for uncertain twodimensional discrete systems.
Optim. Control Appl. Meth.
,
199 
227

14)

S. Xu ,
T. Chen
.
H∞ model reduction in the stochastic framework.
SIAM J. Control Optim.
,
4 ,
1293 
1309

15)

M.V. Basin ,
A.E. Rodkina
.
On delaydependent stability for a class of nonlinear stochastic delaydifference equations.
Dyn. Contin. Discrete Impuls. Syst. A
,
663 
675

16)

E.K. Boukas ,
N.F. AlMuthairi
.
Delaydependent stabilization of singular linear systems with delays.
Int. J. Innov. Comput. Inf. Control
,
2 ,
283 
291

17)

Y. He ,
M. Wu ,
G.P. Liu
.
Parameterdependent lyapunov functional for stability of timedelay systems with polytopictype uncertainties.
IEEE Trans. Autom. Control
,
828 
832

18)

H. Gao ,
J. Lam ,
C. Wang ,
S. Xu
.
H∞ model reduction for discrete timedelay systems: delayindependent and dependent approaches.
Int. J. Control
,
4 ,
321 
335

19)

L.E. Ghaoui ,
F. Oustry ,
M. AitRami
.
A cone complementarity linearization algorithm for static outputfeedback and related problems.
IEEE Trans. Autom. Control
,
8 ,
1171 
1176

20)

P. Gahinet ,
A. Nemirovski ,
A.J. Laub ,
M. Chilali
.
(1995)
LMI control toolbox for use with MATLAB.

21)

E. Fornasini ,
G. Marchesini
.
Doubly indexed dynamical systems: statespace models and structual properties.
Math. Syst. Theory
,
59 
72

22)

P. Gahinet ,
P. Apkarian
.
A linear matrix inequality approach to H∞ control.
Int. J. Robust Nonlinear Control
,
421 
448

23)

S. Boyd ,
L. El Ghaoui ,
E. Feron ,
V. Balakrishnan
.
(1994)
Linear matrix inequalities in systems and control theory.
http://iet.metastore.ingenta.com/content/journals/10.1049/ipvis_20050372
Related content
content/journals/10.1049/ipvis_20050372
pub_keyword,iet_inspecKeyword,pub_concept
6
6