http://iet.metastore.ingenta.com
1887

Subpixel motion computing architecture

Subpixel motion computing architecture

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Vision, Image and Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A pipelined optical-flow processing system that works as a virtual motion sensor has been described. It is based on a field programmable gate array (FPGA) device enabling the easy change of configuring parameters to adapt the sensor to different speeds, light conditions and other environmental factors. It is referred to as a ‘virtual sensor’ because it consists of a conventional camera as front-end supported by an FPGA processing device, which embeds the frame grabber, optical-flow algorithm implementation, output module and some configuration and storage circuitry. This is the first fully stand-alone working optical-flow processing system to include both accuracy and speed of measurement of the platform performance. The customisability of the system for different hardware resources and platforms has also been discussed, showing the resources and performance for a stand-alone board and a PCI co-processing board.

References

    1. 1)
    2. 2)
      • Lucas, B.D., Kanade, T.: `An iterative image registration technique with an application to stereo vision', Proc. DARPA Image Understanding Workshop, April 1984, p. 121–130.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • H. Niitsuma , T. Maruyama . Real-time detection of moving objects. Lect. Notes Comput. Sci. , 1153 - 1157
    7. 7)
      • Cobos, P., Monasterio, F.: `FPGA implementation of Camus correlation optical flow algorithm for real time images', Proc. and 14th Int. Conf. on Vision Interface (VI2001), 2001, p. 32–38.
    8. 8)
      • S. Maya-Rueda , M. Arias-Estrada . FPGA processor for real-time optical flow computation. Lect. Notes Comput. Sci. , 1103 - 1016
    9. 9)
      • Correia, M.V., Campilho, A.C.: `Real-time implementation of an optical flow algorithm', Int. Conf. on Pattern Recognition (ICPR2002), 2002, p. 247–250.
    10. 10)
      • Martín, J.L., Zuloaga, A., Cuadrado, C., Lázaro, J., Bidarte, U.: `Hardware implementation of optical flow constraint equation using FPGAs', CVIU(98), June 2005, 3, p. 462–490.
    11. 11)
      • Celoxica Limited.: ‘Handel-C language reference manual’ (dk2.0 Edn, 2003), RM-1003-4.0.
    12. 12)
      • D.J. Fleet , K. Langley . Recursive filters for optical flow. IEEE Trans. Pattern Anal. Mach. Intell. , 1 , 61 - 67
    13. 13)
      • Simoncelli, E.P., Adelson, E.H., Heeger, D.J.: `Probability distributions of optical flow', IEEE Conf. on Computer Vision and Pattern Recognition, June 1991, Mauii, Hawaii, p. 310–315.
    14. 14)
      • Yamada, H., Tominaga, T., Ichikawa, M.: `An autonomous flying object navigated by real-time optical flow and visual target detection', Proc. IEEE Int. Conf. on Field-Programmable Technology, 2003, p. 222–227.
    15. 15)
      • T. Jebara , A. Azarbayejani , A. Pentland . 3D structure from 2D motion. IEEE Signal Process. Mag. , 3 , 66 - 84
    16. 16)
      • Thomas, G.A., Dancer, S.J.: `Improved motion estimation for MPEG coding within the RACE ‘COUGAR’ project', IEE Int. Broadcasting Convention, IBC 95, September 1995, 413, p. 238–243.
    17. 17)
    18. 18)
      • www.celoxica.com.
    19. 19)
      • D. Benitez . Performance of reconfigurable architectures for image-processing applications. J. Syst. Archit., Euromicro J. , 193 - 210
    20. 20)
      • B.K.P. Horn , B.G. Schunck . Determining optical flow. Artif. Intell. , 185 - 204
    21. 21)
      • Cobos, P., Monasterio, F.: `FPGA implementation of the Horn & Shunk optical flow algorithm for motion detection in real time images', Proc. XIII Design of Circuits and Integrated Systems Conf., November 1998, Madrid, España, p. 616–621.
    22. 22)
      • J. Díaz , E. Ros , S. Mota , R. Carrillo , R. Agís . Real time optical flow processing system. Lect. Notes Comput. Sci. , 617 - 626
    23. 23)
    24. 24)
      • E.M. Ortigosa , A. Cañas , E. Ros , P.M. Ortigosa , S. Mota , J. Dı́az . Hardware description of multi-layer perceptrons with 3 different abstraction levels. Microprocess. Microsyst. , 7 , 435 - 444
    25. 25)
      • T.J. Todman , G.A. Constantinides , S.J.E. Wilton , O. Mencer , W. Luk , P.Y.K. Cheung . Reconfigurable computing: architectures and design methods. IEE Proc., Comput. Digit. Tech. , 2 , 193 - 207
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-vis_20050207
Loading

Related content

content/journals/10.1049/ip-vis_20050207
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address