Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Maximum a posteriori-based approach to blind nonlinear underdetermined mixture

Maximum a posteriori-based approach to blind nonlinear underdetermined mixture

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Vision, Image and Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new learning algorithm is proposed to solve the separation problem of the blind nonlinear underdetermined mixtures. The mixing system is characterised by the post-nonlinear structure and concurrently the number of sensors is less than the number of sources. The proposed algorithm utilises the generalised Gaussian distribution to model the prior probability distribution of the source signals and the mixing variables. A novel iterative technique based on alternate optimisation within the Bayesian framework has been developed for estimating the source signals, mixing matrix and the nonlinear distortion. It is shown that through formal Bayesian derivation, the update of the mixing matrix can be decomposed into two separate constituents given by linear and nonlinear parts. Furthermore, the post-nonlinear distortion functions in the mixing model are approximated by a set of polynomials and the coefficients are found by solving a least square error problem. Simulations have been carried out to verify the effectiveness in separating signals under nonlinear and underdetermined conditions. An average margin of 130% improvement has been obtained when compared with the existing linear algorithm.

http://iet.metastore.ingenta.com/content/journals/10.1049/ip-vis_20050069
Loading

Related content

content/journals/10.1049/ip-vis_20050069
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address