Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Neural minor component analysis approach to robust constrained beamforming

Neural minor component analysis approach to robust constrained beamforming

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Vision, Image and Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Since the pioneering work of Amari and Oja, principal component neural networks and their extensions have become an active adaptive signal processing research field. One of such extensions is minor component analysis (MCA), that proves to be effective in tasks such as robust curve/surface fitting and noise reduction. The aims of the paper are to give a detailed and homogeneous review of one-unit first minor/principal component analysis and to propose an application to robust constrained beamforming. In particular, after a careful presentation of first/minor component analysis algorithms based on a single adaptive neuron, along with relevant convergence/steady-state theorems, it is shown how the adaptive robust constrained beamforming theory by Cox et al. may be advantageously recast into an MCA setting. Experimental results obtained with a triangular array of microphones introduced in a teleconference context help to assess the usefulness of the proposed theory.

References

    1. 1)
      • Wiscott, L.: `Learning invariance manifolds', Proc. Int. Conf. on Artificial neural networks (ICANN), 1998, p. 555–560.
    2. 2)
      • Chu, P.L.: `Superdirective micropone array for a set-top videoconferencing system', Proc. Int. Conf. on Acoustics, speech and signal processing, 1997, 1, p. 235–238.
    3. 3)
      • S.-I. Amari . Neural theory of association and concept formation. Biol. Cybern. , 175 - 185
    4. 4)
      • PH. Besse , J.O. Ramsay . Principal components analysis of sampled functions. Psychometrika , 2 , 285 - 311
    5. 5)
    6. 6)
    7. 7)
      • S. Fiori , L. Albini , A. Faba , E. Cardelli , P. Burrascano . Numerical modeling for the localization and the assessment of electromagnetic field sources. IEEE Trans. Magn. , 3 , 1638 - 1641
    8. 8)
    9. 9)
    10. 10)
      • H. Cox , R.M. Zeskind , M.M. Owen . Robust adaptive beamforming. IEEE Trans. Acoust. Speech. Signal Process. , 10 , 1365 - 1376
    11. 11)
      • E. Oja . Neural networks, principal components, and subspace,. Int. J. Neural Syst. , 61 - 68
    12. 12)
      • S. Haykin . (1994) Neural Networks.
    13. 13)
      • J. Karhunen , J. Joutsensalo . Representation and separation of signals using nonlinear PCA type learning. Neural Netw. , 1 , 113 - 127
    14. 14)
      • H. Robbins , S. Monro . A stochastic approximation method. Ann. Math. Stat. , 400 - 407
    15. 15)
      • J.L. Flanagan , J.D. Johnston , R. Zhan , G.W. Elko . Computer-steered microphone array for sound transduction in large rooms. J. Acoust. Soc. Am. , 5 , 1508 - 1518
    16. 16)
    17. 17)
      • K.I. Diamantaras , S.-Y. Kung . Cross-correlation neural network models. IEEE Trans. Signal Process., , 11 , 3218 - 3223
    18. 18)
      • E. Oja , L. Wang . Roubst fitting by non-linear neural units. Neural Netw. , 3 , 435 - 444
    19. 19)
      • S. Fiori . Extended Hebbian learning for blind separation of complex-valued sources. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. , 4 , 195 - 202
    20. 20)
      • Badidi, L., Radouane, L.: `A neural network approach for DoA estimation and tracking', Proc. of 10th IEEE Workshop on Statistical signal and array processing, August 2000, p. 434–438.
    21. 21)
      • T.D. Sanger . Optimal unsupervised leaning in a single-layer linear feedforward neural network. Neural Netw. , 459 - 473
    22. 22)
      • Fiori, S., Piazza, F.: `Neural MCA for robust beamforming', Proc. Int. Symp. on Circuits and systems (ISCAS'2000), May 2000, Vol. III, p. 614–617.
    23. 23)
      • E. Oja . A simplified neuron model as a principal component analyzer. J. Math. Biol. , 267 - 273
    24. 24)
      • Hwu, Y.S., Srinath, M.D.: `A neural network approach to design of smart antennas for wireless communication systems', Proc. Asilomar Conf. on Signals, systems and computers, 1998, p. 145–148.
    25. 25)
      • Du, K.-L., Swamy, M.N.S.: `An iterative blindcyclostationary beamforming algorithm', Proc. IEEE Int. Conf. on Communications, New York City, April–May 2002.
    26. 26)
      • De Castro, M.C.F., De Castro, F.C.C., Amaral, J.N., Franco, P.R.G.: `A complex valued Hebbian learning algorithm', Proc. Int. Joint Conf. on Neural networks (IEEE-IJCNN), 1998, p. 1235–1238.
    27. 27)
      • S. Costa , S. Fiori . Image compression using principal component Neural Networks. Image Vis. Comp. J. , 649 - 668
    28. 28)
    29. 29)
      • J. Joutsensalo , J. Karhunen . A nonlinear extension of the Generalized Hebbian learning. Neural Process. Lett. , 1 , 5 - 8
    30. 30)
      • S. Fiori , F. Piazza . A general class of ψ-APEX PCA neural algorithms. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. , 9 , 1394 - 1398
    31. 31)
      • H. Cox , R.M. Zeskind , T. Kooij . Practical supergain. IEEE Trans. Acoust. Speech. Signal Process , 3 , 393 - 398
    32. 32)
    33. 33)
      • L. Xu , E. Oja , C.Y. Suen . Modified Hebbian learning for curve and surface fitting. Neural Netw. , 441 - 457
    34. 34)
      • J.-F. Cardoso , A. Souloumiac . Blind beamforming for non-Gaussian signals. IEE Proc. F, Radar Signal Process. , 6 , 362 - 370
    35. 35)
      • R. Klemm . Adaptive airborne MTI: an Auxiliary channel approach. IEE Proc. F, Commun. Radar Signal Process. , 269 - 276
    36. 36)
      • R.O. Schmidt . Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. , 276 - 280
    37. 37)
      • H.M. Abbas , M.M. Fahmy . Neural model for Karhunen-Loéve transform with applications to adaptive image compression. IEE Proc. I, Commun. Speech Vis. , 2 , 135 - 143
    38. 38)
    39. 39)
      • J.M. Kates . Superdirective arrays for hearing aids. J. Acoust. Soc. Am. , 4 , 1930 - 1933
    40. 40)
      • E. Oja . Principal components, minor components, and linear neural networks. Neural Netw. , 927 - 935
    41. 41)
      • J. Rubner , P. Tavan . A self-organizing network for principal component analysis. Europhys. Lett. , 7 , 693 - 698
    42. 42)
      • R. Blumm . Multidimensional stochastic approximation methods. Ann. Math. Stat. , 737 - 744
    43. 43)
      • S.H. Chang , T.Y. Lee , W.H. Fang . High-resolution bearing estimation via unitary decomposition artificial neural network. IEICE Trans. Fundam. , 11 , 2455 - 2462
    44. 44)
    45. 45)
      • Cichocki, A., Kasprzak, W., Skarbek, W.: `Adaptive learning algorithm for principal component analysis with partial data', Proc. 13th European Meeting on Cybernetics and systems research, Vienna, Austria, Apr. 1996, vol. 2, p. 1014–1019.
    46. 46)
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-vis_20030511
Loading

Related content

content/journals/10.1049/ip-vis_20030511
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address