Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Identification of cubically nonlinear systems using undersampled data

Identification of cubically nonlinear systems using undersampled data

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Vision, Image and Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A practical technique for identification of cubically nonlinear systems using higher order spectra of the discrete data samples of the system input and output is proposed. This technique differs from the conventional one in that it only requires the sampling frequency for the system output to be equal to twice the bandwidth of the system input, instead of six times the bandwidth of the system input. This means the demand for high speed processing and a large amount of data in the conventional approach can be greatly relieved. Two methods are developed: one is suitable for systems with a Gaussian random input, the other is suitable for systems with a non-Gaussian random input. The advantages of the two methods over their conventional counterparts are demonstrated via computer simulation.

References

    1. 1)
      • Tsimbinos, J., Lever, K.: `Sampling frequency requirements for identificationand compensation of nonlinear systems', Proceedings of IEEE international conference on Acoustics,speech andsignal processing, 1994, Adelaide, Australia, p. III 513–516.
    2. 2)
      • L.J. Ticks . The estimation of transfer functions of quadratic systems. Technometrics , 563 - 567
    3. 3)
      • W.J. Rugh . (1981) Nonlinear system theory - the Volterra/Wiener approach.
    4. 4)
      • Y.S. Cho , S.B. Kim , E.J. Powers . A digital technique to estimatesecond-order distortion using higher order coherence spectra. IEEE Trans. Signal Process. , 5 , 1029 - 1040
    5. 5)
      • R. Tymerski . Volterra series modelling of power conversion systems. IEEE Trans. Power Electron. , 4 , 712 - 718
    6. 6)
      • M. Schetzen . (1989) The Volterra and Wiener theories of nonlinear systems.
    7. 7)
      • T. Koh , E.J. Powers . Second-order Volterra filtering and its applicationto nonlinear system identification. IEEE Trans. Acoust. Speech Signal Process. , 6 , 1445 - 1455
    8. 8)
      • Y.-C. Tseng , D.A. Linebarger . Linear-quadratic system identificationwith completed frequency domain region of support. IEEE Trans. Signal Process. , 1 , 254 - 261
    9. 9)
      • I.W. Sandberg . Uniform approximation with doubly finite Volterra series. IEEE Trans. Signal Process. , 6 , 1438 - 1442
    10. 10)
      • C.L. Nikias , M.R. Raghuveer . Bispectrum estimation: a digital signal processing framework. Proc. IEEE , 7 , 869 - 891
    11. 11)
      • J.S. Bendat . (1990) Nonlinear system analysis and identification from random data.
    12. 12)
      • N.A. Zervos , R.L. Cupo . Adaptive nondisruptive measurement of harmonicdistortion for voiceband data transmission. IEEE Trans. Commun. , 7 , 2184 - 2200
    13. 13)
      • D.R. Brillinger . Identification of polynomial systems by means of higher orderspectra. J. Sound Vib. , 301 - 313
    14. 14)
      • Im, S., Powers, E.J.: `Extended principal domain for Volterra models', Proceedings of IEEE signal processing ATHOS workshop on Higherorder statistics, 1995, Begur, Girona, Spain, p. 381–385.
    15. 15)
      • J.Y. Hong , Y.C. Kim , E.J. Powers . On modeling the nonlinear relationshipbetween fluctuations with nonlinear transfer functions. Proc. IEEE , 1026 - 1027
    16. 16)
      • S.W. Nam , E.J. Powers . Application of higher order spectral analysis tocubically nonlinear system identification. IEEE Trans. Signal Process. , 7 , 1746 - 1765
    17. 17)
      • K.I. Kim , E.J. Powers . A digital method of modeling quadratically non-linearsystems with a general random input. IEEE Trans. Acoust. Speech Signal Process. , 1758 - 1769
    18. 18)
      • A. Samelis , D. Pavlidis . Mechanisms determining third order intermodulationdistortion in AlGaAs/GaAs heterojunction bipolar transistors. IEEE Trans. Microw. Theory Tech. , 12 , 2374 - 2380
    19. 19)
      • C.-H. Tseng , E.J. Powers . Adaptive estimation of third-order frequencydomain Volterra kernels. Int. J. Adapt. Control Signal Process. , 319 - 342
    20. 20)
      • L.O. Chua , Y. Liao . Measuring Volterra kernels (II). Int. J. Circuit Theory Appl. , 151 - 190
    21. 21)
      • I.W. Sandberg . On Volterra expansions for time-varying nonlinear systems. IEEE Trans. Circuits Syst. , 2 , 61 - 67
    22. 22)
      • A.V. Oppenheim , R.W. Schafer . (1989) Discrete-time signal processing.
    23. 23)
      • I.W. Sandberg . The mathematical foundations of associated expansions formildly nonlinear systems. IEEE Trans. Circuits Syst. , 7 , 441 - 455
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-vis_19971416
Loading

Related content

content/journals/10.1049/ip-vis_19971416
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address