http://iet.metastore.ingenta.com
1887

Novelty detection and neural network validation

Novelty detection and neural network validation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Vision, Image and Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

One of the key factors which limits the use of neural networks in many industrial applications has been the difficulty of demonstrating that a trained network will continue to generate reliable outputs once it is in routine use. An important potential source of errors is novel input data; that is, input data which differ significantly from the data used to train the network. The author investigates the relationship between the degree of novelty of input data and the corresponding reliability of the outputs from the network. He describes a quantitative procedure for assessing novelty, and demonstrates its performance by using an application which involves monitoring oil flow in multiphase pipelines.

http://iet.metastore.ingenta.com/content/journals/10.1049/ip-vis_19941330
Loading

Related content

content/journals/10.1049/ip-vis_19941330
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address