Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Multi-class cancer classification using multinomial probit regression with Bayesian gene selection

Multi-class cancer classification using multinomial probit regression with Bayesian gene selection

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

We consider the problems of multi-class cancer classification from gene expression data. After discussing the multinomial probit regression model with Bayesian gene selection, we propose two Bayesian gene selection schemes: one employs different strongest genes for different probit regressions; the other employs the same strongest genes for all regressions. Some fast implementation issues for Bayesian gene selection are discussed, including preselection of the strongest genes and recursive computation of the estimation errors using QR decomposition. The proposed gene selection techniques are applied to analyse real breast cancer data, small round blue-cell tumours, the national cancer institute's anti-cancer drug-screen data and acute leukaemia data. Compared with existing multi-class cancer classifications, our proposed methods can find which genes are the most important genes affecting which kind of cancer. Also, the strongest genes selected using our methods are consistent with the biological significance. The recognition accuracies are very high using our proposed methods.

References

    1. 1)
      • J. Albert , S. Chib . Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc. , 669 - 679
    2. 2)
      • S. Dudoit , J. Fridlyand , T.P. Speed . Comparison of discrimination methods for the classification of tumors using gene expression data. J. Amer. Statist. Assoc. , 457 , 77 - 87
    3. 3)
      • X. Zhou , X. Wang , E.D. Dougherty . Construction of genomic networks using mutual-information clustering and reversible-jump Markov-Chain-Monte-Carlo predictor design. Signal Processing , 4 , 745 - 761
    4. 4)
      • P. Yau , R. Kohn , S. Wood . Bayesian variable selection and model averaging in high-dimensional multinomial nonparametric regression. J. Comput. Graph. Statist. , 23 - 54
    5. 5)
      • H. Chipman , E.I. George , R. McCulloch . The practical implementation of Bayesian model selection. IMS Lect. Notes – Monogr. Ser. , 117 - 124
    6. 6)
      • K. Imai , D.A. van Dyk . A Bayesian analysis of the multinomial probit model using marginal data augmentation. J. Econometrics , 311 - 334
    7. 7)
      • I. Guyon , J. Weston , S. Barnhill , V. Vapnik . Gene selection for cancer classification using support vector machines. Mach. Learning , 389 - 422
    8. 8)
      • J. Khan , J.S. Wei , M. Ringnr , L.H. Saal , M. Ladanyi , F. Westermann , F. Berthold , M. Schwab , C.R. Antonescu , C. Peterson3 , P.S. Meltzer . Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine , 673 - 679
    9. 9)
      • I. Hedenfalk , D. Duggan , Y. Chen , M. Radmacher , M. Bittner , R. Simon , P. Meltzer , B. Gusterson , M. Esteller , M. Raffeld , Z. Yakhini , A. Ben-Dor , E. Dougherty , J. Kononen , L. Bubendorf , W. Fehrle , S. Pittaluga , S. Gruvberger , N. Loman , O. Johannsson , H. Olsson , B. Wilfond , G. Sauter , O.-P. Kallioniemi , A. Borg , J. Trent . Gene expression profiles in hereditary breast cancer. New England J. Medic. , 539 - 548
    10. 10)
      • M.P.S. Brown , W. Noble Grundy , D. Lin , N. Cristianini , C. Walsh Sugnet , T.S. Furey , M. Ares , D. Haussler . Knowledge-based analysis of micrarray gene expression data by using support vector machines. Proc. Nat. Acad. Sci. USA , 262 - 267
    11. 11)
      • G.A.F. Seber . Multivariate Observations.
    12. 12)
      • D.V. Nguyen , D.M. Rocke . Multi-class cancer classification via partial least squares using gene expression profiles. Bioinformatics , 1216 - 1226
    13. 13)
      • T.R. Golub . Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science , 531 - 537
    14. 14)
      • M. Smith , R. Kohn . Nonparametric regression using Bayesian variable selection. J. Econometrics , 317 - 344
    15. 15)
      • S. Kim , E.R. Dougherty , J. Barrea , Y. Chen , M. Bittner , J.M. Trent . Strong feature sets from small samples. J. Comput. Biol. , 127 - 146
    16. 16)
      • L.J. Heyer , S. Kruglyak , S. Yooseph . Exploying expression data: identification and analysis of coexpressed genes. Genome Res. , 1106 - 1115
    17. 17)
      • K.E. Lee , N. Sha , E.R. Dougherty , M. Vannucci , B.K. Mallick . Gene selection: a Bayesian variable selection approach. Bioinformatics , 90 - 97
    18. 18)
      • H.P. Zhang , C.Y. Yu , B. Singer , M. Xiong . Recursive partitioning for tumor classification with gene expression microarray data. Proc. Nat. Acad. Sci. USA , 6730 - 6735
    19. 19)
      • D.T. Ross , U. Scherf , M.B. Eisen , C.M. Perou , C. Rees , P. Spellman , V. Iyer , S.S. Jeffrey , M.V. de Rijn , M. Waltham , A. Pergamenschikov , J.C.F. Lee , D. Lashkari , D. Shalon , T.G. Myers , J.N. Weinstein , D. Botstein , P.O. Brown . Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics , 3 , 227 - 235
    20. 20)
      • C. Robert . Simulation of truncated normal variables. Statist. Comput. , 121 - 125
    21. 21)
      • R. Jornsten , B. Yu . Simultaneous gene clustering and subset selection for classification via MDL. Bioinformatics
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-syb_20050015
Loading

Related content

content/journals/10.1049/ip-syb_20050015
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address