Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Layered Al2O3–TiO2 composite dielectric resonators with tuneable temperature coefficient for microwave applications

Layered Al2O3–TiO2 composite dielectric resonators with tuneable temperature coefficient for microwave applications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Science, Measurement and Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Aluminium oxide displays very low dielectric loss factor (tan δ) at microwave frequencies. However, its temperature coefficient of resonant frequency (τf) is approximately –60 ppm/K and is unsatisfactory for certain applications. It is shown that applying a film of titanium oxide with a τf of 450 ppm/K produces a composite in which the τf can be tuned to zero over a wide temperature range. The tan δ of the composite at zero τf is 3.3 × 10-5 (Q = 30 000) at room temperature (300 K) and at 10 GHz.

References

    1. 1)
      • S.J. Penn , N.McN. Alford , A. Templeton , X. Wang , M. Xu , M. Reece , K. Schrapel . Effect of porosity and grain size on the microwave dielectric propertiesof sintered alumina. J. Am. Ceram. Soc. , 1885 - 1888
    2. 2)
      • Tobar, M.E., Krupka, J., Ivanov, E.N., Woode, R.A.: `Dielectric frequency compensation ofhigh quality sapphire dielectric resonators', Proceedings of IEEE Frequency Control symposium, 1996, p. 779–781.
    3. 3)
      • A. Templeton . Microwave dielectric loss of titanium oxide. J. Am. Ceram. Soc. , 1 , 95 - 100
    4. 4)
      • Komatsu, Y., Mori, T., Sawano, H., Nakatani, M.: `A frequency-stabilized MIC oscillatorusing a newly-developed dielectric resonator', IEE Int. Microwave Symp. Digest, 1981, p. 313–315.
    5. 5)
      • D. Kajfez , P. Guillon . (1986) Dielectric resonators.
    6. 6)
      • Tobar, M.E., Krupka, J., Ivanov, E.N., Woode, R.A.: `Sapphire-rutile frequency-temperature-compensatedwhispering gallery mode resonators', Proceedings of IEEE Frequency Control symposium, 1997, p. 1000–1003.
    7. 7)
      • N.McN. Alford , S.J. Penn , A. Templeton , X. Wang , S.J. Webb , N.McN. Alford . (1998) Effect of processing on the dielectric properties of ceramic dielectricresonator materials, Growth and processing of electronic materials.
    8. 8)
      • Hao, L., Klein, N., Radcliffe, W.J., Gallop, J.C., Ghosh, I.S.: `Temperature compensatedcryogenic whispering gallery mode resonator for microwave frequency standard applications', Proceedings of 12th EFTF, 1998, p. 425–429.
    9. 9)
      • N.McN. Alford , S.J. Penn . Sintered alumina with low dielectric loss. J. Appl. Phys. , 5895 - 5898
    10. 10)
      • S.K. Lim , H.Y. Lee , J.C. Kim , C. An . The design of a temperature-stable stepped impedance resonatorusing composite ceramic materials. IEEE Microw. Guid. Wave Lett. , 4 , 143 - 144
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-smt_20000699
Loading

Related content

content/journals/10.1049/ip-smt_20000699
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address