Use of group theory in symmetrical 3-D eddy-current problems

Access Full Text

Use of group theory in symmetrical 3-D eddy-current problems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Science, Measurement and Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Geometrical symmetry often occurs in computational electromagnetics. However, it is generally not taken into account when the excitations do not share this symmetry. A rationale is required, and group theory gives the only valuable tool for this purpose. It provides a symmetric decomposition of any problem that allows its study on a reduced part of the initial geometry. This way of treating field problems generally leads to substantial computational savings. The symmetry concept is applied in the paper to 3-D linear eddy-current analysis, where the numerical scheme used is a mixed FEM–BEM method. Detailed examples are presented to demonstrate the efficiency of the use of symmetry.

Inspec keywords: symmetry; group theory; eddy currents; geometry; finite element analysis; boundary-elements methods

Other keywords: group theory; computational electromagnetics; symmetrical 3-D eddy-current problems; geometrical symmetry; mixed FEM-BEM method

Subjects: Algebra; Numerical approximation and analysis; Algebra; Steady-state electromagnetic fields; electromagnetic induction; Geometry, differential geometry, and topology; Finite element analysis; Electrical engineering computing; Combinatorial mathematics; Combinatorial mathematics; Finite element analysis; Combinatorial mathematics; Electromagnetic induction; Numerical analysis; Algebra; Group theory

References

    1. 1)
      • R. Ballisti , Ch. Hafner , P. Leuchtman . Application of the representationtheory of finite groups to field computation problems with symmetricalboundaries. IEEE Trans. Magn. , 2 , 584 - 587
    2. 2)
      • J.P. Serre . (1971) Représentations linéaires des groupes finis.
    3. 3)
      • E.L. Allgower , K. Böhmer , K. Georg , R. Miranda . Exploiting symmetryin boundary elements. SIAM J. Numer. Anal. , 534 - 552
    4. 4)
      • A. Bossavit , J.C. Vérité . A mixed FEM-BIEM method to solve 3-D eddy-currentproblems. IEEE Trans. Magn. , 2 , 431 - 435
    5. 5)
      • M. Hamermesh . (1964) Group theory.
    6. 6)
      • A. Bossavit . On the exploitation of geometrical symmetry in structural computationsof spatial power stations. EDF, Bulletin de la DER, série C , 5 - 17
    7. 7)
      • J. Lobry , J. Trécat , C. Broche . Symmetry and TLM method in nonlinearmagnetostatics. IEEE Trans. Magn. , 3 , 702 - 705
    8. 8)
      • Lobry, J., Broche, C., Fostier, L.: `A 3-D numerical modelling of an inductionmachine with solid iron rotor using Whitney elements and the group theory', Proc. of the ICEM'94 Conf., 1994, 2, p. 688–693.
    9. 9)
      • A. Bossavit . The exploitation of geometrical symmetry in 3-D eddy-currentscomputation. IEEE Trans. Magn. , 6 , 2307 - 2309
    10. 10)
      • J. Lobry , C. Broche . Exploitation of the geometrical symmetry in theboundary element method with the group representation theory. IEEE Trans. Magn. , 1 , 118 - 123
    11. 11)
      • Chelius, P., Davat, B., Lajoie-Mazenc, M.: `Group theory and electromagneticfield calculation in permanent-magnet synchronous motor', Proc. of the IMACS-TCI'90 Conf., 1990, p. 215–220.
    12. 12)
      • Lobry, J.: `Symétries et éléments de Whitney en magnétodynamiquetridimensionnelle— Application à l'étude d'un moteur asynchrone à rotor massif rainuré', 1993, PhD, FPMs.
    13. 13)
      • A. Bossavit . Symmetry, groups, and boundary value problems. A progressive introductionto non-commutative harmonic analysis of partial differential equations indomains with geometrical symmetry. Comput. Methods Appl. Mech. Eng. , 167 - 215
    14. 14)
      • C.L. Fortescue . Method of symmetrical coordinates applied to the solution of polyphase networks. AIEE Trans. , 1027 - 1140
    15. 15)
      • J. Lobry , J. Trécat , C. Broche . Broken symmetry in the boundary elementmethod. IEEE Trans. Magn. , 3 , 1432 - 1435
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-smt_19960734
Loading

Related content

content/journals/10.1049/ip-smt_19960734
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading