Your browser does not support JavaScript!

Complex double-binary-offset-carrier modulation for a unitary characterisation of Galileo and GPS signals

Complex double-binary-offset-carrier modulation for a unitary characterisation of Galileo and GPS signals

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IEE Proceedings - Radar, Sonar and Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors introduce a new class of modulation, the complex double-binary-offset-carrier (CDBOC) modulation class, which covers most of the modulation types proposed so far for Galileo and GPS signals, namely the binary and quaternary phase shift keying, sine BOC, cosine BOC and alternate BOC modulations. At the same time, the CDBOC class provides a more general framework, with the potential for new applications of wide-band code division multiple access systems and/or future satellite navigation systems. The theoretical derivations of the power spectral density and the auto-correlation function of the CDBOC-modulated signals are introduced, and the theoretical analysis is compared with the results obtained via simulations. The advantage of our method in the context of Galileo and GPS signals is its simplicity and the fact that it provides unified analytical formulas for most of the existent GPS/Galileo signals.


    1. 1)
      • E. Lohan , A. Lakhzouri , M. Renfors . A novel family of binary-offset-carrier modulation techniques with applications in satellite navigation systems, Wirel. Commun. Mob. Comput..
    2. 2)
      • `NAVSTAR GPS Space Segment/Navigation User Interfaces, Interface Specification', IS-GPS-705, November 2003, ARINC Engineering Services LLC, El Segundo, CA, USA.
    3. 3)
      • Ries, L., Legrand, F., Lestarquit, L., Vigneau, W., Issler, J.: `Tracking and multipath performance assessments of BOC signals using a bit-level signal processing simulator', Proc. ION-GPS2003, September 2003, Portland, OR, USA, p. 1996–2009.
    4. 4)
      • McGraw, G., Braasch, M.: `GNSS multipath mitigation using high resolution correlator concepts', Proc. ION National Technical Meeting, January 1999, San Diego, CA, USA, p. 333–342.
    5. 5)
      • Heiries, V., Oviras, D., Ries, L., Calmettes, V.: `Analysis of nonambiguous BOC signal acquisition performance', CDROM Proc. ION GNSS, September 2004, Long Beach, CA, USA.
    6. 6)
      • Simsky, A., Sleewaegen, J., de Wilde, W., Wilms, F.: `Galileo receiver development at Septentrio', CDROM Proc. ENC GNSS 2005, July 2005, Munich, Germany.
    7. 7)
      • Barker, B., Betz, J., Clark, J., Correia, J., Gillis, J., Lazar, S., Rehborn, K., Straton, J.: `Overview of the GPS M code signal', CDROM Proc. NMT, 2000.
    8. 8)
      • Ries, L., Lestarquit, L., Armengou-Miret, E., Legrand, F., Vigneau, W., Bourga, C., Erhard, P., Issler, J.: `A software simulation tool for GNSS2 BOC signals analysis', Proc. of ION GPS, September 2002, Portland, OR, USA, p. 2225–2239.
    9. 9)
      • Betz, J., Goldstein, D.: `Candidate designs for an additional civil signal in GPS spectral bands', MITRE Technical Papers, January 2002.
    10. 10)
      • Sleewaegen, M., de Wilde, W., Hollreiser, M.: `Galileo AltBOC receiver', CDROM Proc. ENC GNSS 2004, May 2004, Rotterdam, The Netherlands.
    11. 11)
      • `Galileo joint undertaking (GJU) – Galileo standardization document for 3GPP', , May 2005, GJU webpages (active December 2005).
    12. 12)
      • Lohan, E.S.: `Statistical analysis of BPSK-like techniques for the acquisition of Galileo signals', CDROM Proc. 23rd AIAA Int. Communications Satellite Systems Conf. (ICSSC), September 2005.
    13. 13)
      • Fishman, P., Betz, J.: `Predicting performance of direct acquisition for the M-code signal', Proc. ION NMT, 2000, p. 574–582.
    14. 14)
      • Martin, N., Leblond, V., Guillotel, G., Heiries, V.: `BOC(x, y) signal acquisition techniques and performances', Proc. ION-GPS2003, September 2003, Portland, OR, USA, p. 188–198.
    15. 15)
      • Hein, G., Irsigler, M., Rodriguez, J.A., Pany, T.: `Performance of Galileo L1 signal candidates', CDROM Proc. European Navigation Conference GNSS, May 2004.
    16. 16)
      • Betz, J.: `The offset carrier modulation for GPS modernization', Proc. ION Technical Meeting, 1999, p. 639–648.
    17. 17)
      • Pratt, A., Owen, J.: `BOC modulation waveforms', Proc. ION-GPS2003, September 2003, Portland, OR, USA, p. 1044–1057.
    18. 18)
      • Hein, G.W., Avila-Rodriguez, J.A., Ries, L., Letarquit, L., Issler, J.L., Godet, J., Pratt, T.: `A candidate for the Galileo L1 OS optimized signal', Proc. ION-GPS, September 2005, Long Beach, CA, USA, p. 833–845.
    19. 19)
      • Hein, G., Godet, J., Issler, J., Martin, J., Pratt, T., Lucas, R.: `Status of Galileo frequency and signal design', CDROM Proc. ION GPS 2002 Meeting, 2002.

Related content

This is a required field
Please enter a valid email address